The CLEO-c / CESR-c Program: How we got here & First Results!

Roy A. Briere

Carnegie Mellon University & CLEO Collaboration

Carnegie Mellon University
22 Nov 2004
30th Anniversary of November Revolution!

Experimental Observation of a Heavy Particle J^+

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Y. Y. Lee

Brookhaven National Laboratory, Upton, New York 11973

(Received 12 November 1974)

We report the observation of a heavy particle J, with mass $m = 3.1$ GeV and width approximately zero. The observation was made from the reaction $p + \bar{p} \rightarrow e^+ e^-$ by measuring the $e^+ e^-$ mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory’s 30-GeV alternating-gradient synchrotron.

Discovery of Charm Quark:

J/ψ Charm-Anticharm Meson

Solidifies Standard Model;

Meanwhile, in Ithaca...
The CESR e^+e^- Collider is Born

1973: Sketched by Tigner
1979: Begins operating at bottom-antibottom energies

The “little accelerator that could”...and still does!
Outline

Past:

Particle Phenomenology and Weak Flavor Physics

“Present”:

The CLEO-c and CESR-c Transition: Why charm physics at threshold?

Peek at Future:

First Results from our Pilot Run!
Particles of Standard Model

Note 3 copies, or “generations”

Spin-1/2 Matter Particles (Fermions)

Spin-1 Force Carriers (‘Gauge’ Bosons)
Ordinary Matter

Only “First Generation”: u,d,e, ν_e

Nucleus of u,d; plus e

ν_e: beta decay, fusion,...

neutron beta decay:

W

e^- ν_e

n

u

p

d

d

d

d

"green fog" **

= strong force

(quarks always bound!)

** a.k.a. “brown muck”
Particle Physics Phenomenology

Interactions = vertices in Feynman diagrams
can “spin around” vertices in space-time...

Note: fermions lines never end inside diagram...
Electromagnetic Interaction

One basic vertex:

any charged particle + photon
strength = electric charge

Perturbative:

Power series in $\alpha_{EM} \ (\sim e^2 = 1/137)$
Lowest-order diagram usually enough

...but also precision with loops!

c.f. $g-2$ (anomalous magnetic moment)
The Other Interactions

Weak: \((W^{\pm}, Z^0) \)
- perturbative, but...
- strength varies (depends on quark types, or “flavors”)
- violates discrete symmetries (\(P, C, \text{CP}, T \)),
- doesn’t conserve several quantum #’s… (flavors)
⇒ Interesting!

Strong: \((g = \text{gluon}) \)
- uniform strength vertices
- non-perturbative: very hard to calculate
- No free quarks: always strong effects!
⇒ confuses any weak measurement w/ quarks
Vertices for all Gauge Bosons

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>d</th>
<th>e</th>
<th>ν_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>γ, g, Z^0</td>
<td>W^±</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>W^±</td>
<td>γ, g, Z^0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>γ, Z^0</td>
<td>W^±</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_e</td>
<td>W^±</td>
<td>Z^0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neutral:
- fermion unaltered
- Each gen. same
- Never changes gen.
 ("no FCNC")

Charged:
- fermion changes
- Mixes generations for quarks**

** ν mass & oscillations are another colloquium..."
Glossed over a few things...

Are empty boxes really empty?
Further, “grand” unification, proton decay, leptoquarks...

Z^0 couplings more complicated than the table indicates
Due to nature of Electro-Weak symmetry breaking
Detailed studies at LEP “Z^0 factory” at CERN Laboratory
Parity Violation in e-deuteron scattering and atomic transitions

Neutrino caveats
Neutrono masses and mixing very topical now!
Double beta decay and Majorana vs. Dirac mass

Gauge-only Vertices
Weak: studied at LEP (ZWW, γWW, ...)
Strong: related to 2004 Nobel Prize (ggg & loops)

But there’s enough richness in the W interactions to keep us plenty busy today...
Strengths of all W^\pm couplings

CKM Mixing Matrix: 9 elements

$\text{Ampl}(q_i \Rightarrow q_j W) \sim V_{ij}$

(V_{ij} also appear in meson mixing...)

Weak Decays:

u,d,c,t decay: normal

$s \Rightarrow u W^- : \text{ slow}$

$b \Rightarrow c W^- : \text{ very slow}$
Cabibbo-Kobayashi-Maskawa Matrix

Wolfenstein Parameterization: exploits unitarity, hierarchy of size

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>s</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
<td>λ</td>
<td>$A\lambda^3 (\rho-i\eta)$</td>
</tr>
<tr>
<td>c</td>
<td>$-\lambda$</td>
<td>1</td>
<td>$A\lambda^2$</td>
</tr>
<tr>
<td>t</td>
<td>$A\lambda^3 (1-\rho-i\eta)$</td>
<td>$-A\lambda^2$</td>
<td>1</td>
</tr>
</tbody>
</table>

4 parameters:
- \(\lambda\) (~ 0.22)
- \(|V_{ij}| \sim \lambda^n\)
- \(A, \rho, \eta\) (of order 1)

Concentrate on \(\rho, \eta\):
- in smallest elements
- \(\eta \Rightarrow CP\) violation
Oddities of Weak Interaction

Violates Discrete Symmetries, Flavor Quantum #'s:

-- Violates parity: 1956 \((^6\text{Co} \text{ beta decay, etc.})\)
-- Violates CP: 1964 \((K_L \text{ meson decays})\)

-- Causes all “non-trivial” decays \((\Delta F = \pm 1\) \(F = \text{‘flavor’}\))
 (via \(W^\pm\), not \(Z^0\)...)
-- Allows neutral meson “mixing”: e.g., \(B^0 \leftrightarrow \overline{B^0}\)

“Weak” force:

But still visible, since it causes particle type to change!

However:

Strong force complicates interpretation of data
Measure from $B^0 - B^0$ mixing

(not @ CLEO)

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>s</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
<td>λ</td>
<td>$A\lambda^3(\rho - i\eta)$</td>
</tr>
<tr>
<td>c</td>
<td>$-\lambda$</td>
<td>1</td>
<td>$A\lambda^2$</td>
</tr>
<tr>
<td>t</td>
<td>$A\lambda^3(1 - \rho - i\eta)$</td>
<td>$-A\lambda^2$</td>
<td>1</td>
</tr>
</tbody>
</table>

B Physics & Small CKM Elements

Measure from B decays

(@ CLEO, et al.)

Note strong interaction fog...

Measure from $B^0 - B^0$ mixing

(not @ CLEO)
Over-constraining the CKM Matrix

1st x 3rd column unitarity:

\[V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 \]

\[\Rightarrow \text{normalize to } |V_{cd} V_{cb}^*| = A \lambda^3 \]

Makes triangle: \(V_{ub}^* + V_{td} = 1 \)

“Unitarity Triangle”

Recent snapshot of knowledge of key CKM parameters

Exp’t: 3 B meson and 1 Kaon
Why Do We Measure ρ, η ??

We don't really care what ρ, η are ...
... we care if results from different measures of them are the same!

-- Is the theory internally consistent?

-- Or is there a hint of "new physics"

But now the issue is becoming theoretical precision.

Foreshadowing: Charm physics can help!
The CLEO-c/CESR-c Transition

Weak Flavor Physics & CLEO
B’s: too much of a good thing?
D’s: neglected cousin?
Spectrum of Heavy Quarkonium

(cc) and (bb) mesons

Charmonium

Bottomonium

e^+e^- colliders create ψ's (cc) and Υ's (bb)

Below "open flavor threshold": annihilate into gluons and/or photons
Above: decay into flavored meson pairs: D̄D̄ (or B̄B̄) meson pairs
Decays of Quarkonium

Below flavor threshold: \(QQ \) re-annihilate!

\[QQ \] annihilate (mostly to gluons):
gives spray of lighter quarks

Above flavor threshold: \(Q \& Q \) separate: can study!

\[\Upsilon(4S) \Rightarrow B^+ B^-, B^0 \bar{B}^0 \]
\[\psi(3770) \Rightarrow D^+ D^-, D^0 \bar{D}^0 \]

These are the two “best” quarkonia:
-- no energy for any extra particles: ONLY meson pairs
“Botany”: Flavored Heavy Mesons

\[B^+ = \overline{b}u \quad B^0 = \overline{b}d \quad B^0_s = \overline{b}s \]
\[D^+ = \overline{c}u \quad D^0 = \overline{c}d \quad D^+_s = \overline{c}s \]

(not the most consistent naming conventions...)

light ones: \(K \) with an \(s \) quark (common in \(D \) decays)
\(\pi \) with all \(u,d \) quarks

Study Weak Interactions (in flav'd meson decays):
\(\Upsilon(4S) \) & \(\psi(3770) \) decays (source of flav'd mesons):
Good kinematic constraints on meson pairs

These heavy mesons decay weakly (\(V_{ub}, V_{cb} \))
Neutral mesons can “mix” (\(V_{td}, V_{ts} \))

...but don’t forget quarks are bound inside mesons: strong int. effects!
CLEO/CESR B Physics Era:

A History of Performance & Innovation

Superconducting RF & final-focus quads

Pretzels, crossing angles, multi-bunch, ...
CLEO, B Physics, Competition...

B physics is perfect for studying CKM
CLEO** exploited the $\Upsilon(4S)$ for >20 years!

** and ARGUS @ DESY

But, new things were needed:

More luminosity
Asymmetric beam energies:
 if B’s move, measure time dependence:
 directly get angles of Unitarity Triangle

Dedicated “B factory” Accelerators:

PEP-II at SLAC, BaBar detector Stanford
KEK-B at KEK, Belle detector Japan
SLAC/KEK: Dedicated B Factories

New machines successful!
Caught CLEO by 2000/01
(CLEO had \(\rightarrow \sim 20 \) fb\(^{-1} \))

What do we do now???
-- symm. high luminosity.?
-- something “new”?

Great success for HEP!
But for local economy?
Of course, everyone always wants to build a bigger machine...

...but the real future was at lower energy!

We were (almost) perfect for charm physics
Better Theory through Experiment...

Current Theory
And Experiment
mostly b quark

Same Experiment,
Better Theory
lattice verified
with experiment!
easier with c quark
Charm Helping B Physics

\[f_D \text{ LQCD} = \text{exp't} \, ? \]

\(f_D \) is a “decay constant”:
- chance that quarks are at same place
- \(\sim |\psi(0)|^2 \) : square of wavefunction at origin

 (weak interaction is short-range)

Lattice QCD:
- Calculate strong force on computers

Leptonic D Decays

use LQCD \(f_B \) here

get \(V_{td}, V_{ts} \)
Charm Helping B Physics

Form factors, CKM
FF help w/ B decays

“Form Factor”:
~ Chance quarks can bind into final state
Relate $B \rightarrow \pi e\nu$ to $D \rightarrow \pi e\nu$

get V_{ub}

Semileptonic
D Decays
Charm Helping B Physics

Absolute Branching fractions
(decay rates) for normalization

B decays most often to Charm:
Form factors less of an issue for $B \rightarrow D\nu$
But B decay is normalized to charm

Hadronic
D Decays
The CLEO-c Physics Program

Clear up QCD issues impacting all weak physics!

Precision Charm Physics (main topic today; but no D_s data yet)

Leptonic: decay constants f_D and f_{D_s}
Semi-leptonic: form factors, V_{cs}, V_{cd}
Hadronic: precise absolute BR's for D^+, D^0, D_s golden modes

Specialized Charm Physics (no time today)

D-mixing: extract of strong $K\pi$ phase!
Very clean Dalitz plots: CP violation with CP-tagged states!

Charmonia and Spectroscopy (few plots at end; no J/ψ data yet)

Charmonium spectroscopy, $\psi(2S)$ decays
Searches for glue-rich exotic states via J/ψ decays.

Many topics help validate modern lattice QCD techniques:
Need verification that claimed accuracy is achieved... e.g., ~2% level for f_D
Why a Charm Renaissance Now?

I've explained why charm is so good, but:

 * Why not vigorously pursued before?
 * It was discussed ... as a "tau-charm factory" ...

There have been, and still are, several charm experiments, but...

-- charm decays are not CKM-suppressed \((c \Rightarrow sW)\) is full-strength
-- charm mesons \((D's)\) "decay too fast to mix"

 * Naively: a "poor cousin" of B physics?

Needs of B physics were at first DATA, not better theory

 * But now they need the assistance of charm!

BEPC/BESII in Beijing:

 * already ran as a less-fancy version of CESR-c/CLEO-c

A big upgrade is in progress, but this will run only after we are done...
Nominal CLEO-c Run Plan

Main change for CESR accelerator:
Installation of 12 wiggler magnets (for damping at low energy)

Winter 2003/2004: 6-wiggler ‘Pilot Run’ yielding results that follow

Year 1: $E = 3770$ MeV, 3 fb$^{-1}$ \Rightarrow 18,000,000 $D\bar{D}$ decays,
> 3,000,000 tagged D decays.

Year 2: $E = 4140$ MeV, 3 fb$^{-1}$ \Rightarrow 1,500,000 $D_s^+ D_s^-$ events,
300,000 tagged D_s decays

Year 3: $E = 3100$ MeV, 1 fb$^{-1}$ \Rightarrow 1,000,000,000 J/ψ decays.

Already have some $\psi(2S)$; likely to take more...
Maybe some Λ_c data as well?
Superconducting Wiggler Magnets (x12)

Induce synchrotron radiation:
add damping to stabilize beams**
(ring 'too large' for lower energy)

** I'm not doing justice to the fascinating accelerator physics!
“ZD” for CLEO-c: 6-layer, stereo chamber
First Results!

(All results PRELIMINARY!)
CLEO-c Pilot Run Data

6 CESR Wigglers installed Summer 2003
Winter 2003/4: data on the $\psi(3770)$, $\psi(2S)$, continuum

- ~ 20 pb$^{-1}$ continuum
- ~ 3 pb$^{-1}$ $\psi(2S)$
- ~ 60 pb$^{-1}$ $\psi(3770)$

Cross-Section (Log Scale)

E_{beam} (GeV)

6 Wiggler Running Luminosity $\sim 5 \times 10^{31}$ cm$^{-2}$ s$^{-1}$
12 Wiggler Design Luminosity $\sim 3 \times 10^{32}$ cm$^{-2}$ s$^{-1}$
CLEO-c Pilot Run Data

Integrated $\mathcal{L} = 89.6/110.6$ pb$^{-1}$

Integrated Luminosity (1/pb)

Physics at the $\psi(3770)$

Most charm analyses use tagging:

- A tag is a fully-reconstructed decay

 e.g., $D^+ \rightarrow K^- \pi^+ \pi^+$, $D^0 \rightarrow K^- \pi^+$,
 and other common hadronic modes

Tagging: gives direction of p_D;
reduces combinatorics, background!

Compare # of single, # of double tag events:

- Measure σ_{DD} and absolute hadronic branching fractions

Study Leptonic/Semileptonic decays of other D:

- Know 4-momentum of initial state and of the tagging D
 \[\Rightarrow \text{know 4-momentum of other } D; \text{ infer missed neutrino} \]
General Analysis Techniques

Charged Tracks: \(K^\pm \) and \(\pi^\pm \) (and \(\pi^\pm \) can build \(K_s \)):
- find in wire drift chamber via ionization
- \(dE/dx \), RICH to distinguish \(K \) from \(\pi \); \(E/p \) for \(e \)

Photons (can pair to find \(\pi^0 \)):
- find energy without a track in CsI calorimeter

Kinematics predicts us \(E_D, |p_D| \):

Momentum Conservation: \(M_{bc} = (E_{\text{beam}}^2 - p_{\text{cand}}^2)^{1/2} \)
- Substitute \(E_D = E_{\text{beam}} \) (\(M_{bc} \) = “beam-constrained mass”)
- Better resolution (~1.5 MeV; mostly beam energy spread)

Energy conservation: \(\Delta E = E_{\text{cand}} - E_{\text{beam}} \)
- Peaks at 0; sensitive to Particle ID, missing particles

Tagging: gives direction of \(p_D \);
- reduces combinatorics, background!
Types of Decays and Physics

Hadronic: (e.g., $D^0 \rightarrow K^- \pi^+$)
-- no neutrinos, "fully reconstruct"
-- Use as "tags"

measure hadronic reference branching fractions
use to reconstruct other decays with neutrinos

Leptonic: (e.g., $D^+ \rightarrow \mu^+\nu$)
-- decay constant & CKM elements from mixing

Semileptonic: (e.g., $D^0 \rightarrow K^- e^+\nu$)
-- form-factors & CKM elements

Both leptonic & semileptonic help us learn about CKM quark-mixing matrix: with not just c, but also b quarks
Tagged Semileptonic Event!

\[D^0 \Rightarrow K^- e^+ \nu \quad \text{vs.} \quad D^0 \Rightarrow K^+ \pi^- \]
“Single Tags”: Find one D decay

Notice the log scale:

Very clean data!

Note: high-side tail is from beams radiating photons
“Double Tags”: Find both D’s

M_{bc1} vs. M_{bc2}

(simulated)
(easier to see…)

M_{bc} projections
(real Data)
\[\sigma(DD), \text{ Branching Fractions} \]

Single tag

- \[X \]
- \[e^+ \rightarrow D^0 \rightarrow K^+ \pi^- \]
- \[S = 2 N_{DD} B \varepsilon_1 \]
- \(S \): # Single tags
- \[\sigma_{DD} = S^2 / 4DL \]
- Independent of \(B \) (and \(\varepsilon \), if \(\varepsilon_2 = \varepsilon_1^2 \))

Double tag

- \[e^+ \rightarrow D^0 \rightarrow K^- \pi^- \]
- \[D = N_{DD} B^2 \varepsilon_2 \]
- \(D \): # Double tags
- \[B = 2D\varepsilon_1 / S\varepsilon_2 \]
- Independent of \(N_{DD} \) typical Achilles’ heel

\[N_{DD} = \sigma_{DD} L \]
- \(B \): Branching frac
- \(\varepsilon \): Detection eff’y

Combining

- \[N = S + D \]
Absolute Hadronic Decay Fractions

Ratio of single and double tags:
-- need MC efficiency
-- DO NOT need # DD pairs

Statistically powerful already
(inner error bars)

Systematics will improve:
more work and more data
(much progress already in hand...)
Measurement of $D^+ \Rightarrow \mu^+ \nu_\mu$

The leptonic decay width is given by:

$$\Gamma_{\ell\nu} = \frac{1}{8\pi} G_F^2 f_D^2 m_\ell^2 M_D (1 - \frac{m_\ell^2}{M_D^2})^2 |V_{cd}|^2$$

Branching frac. implies f_D: Vital check of LQCD calc'ns.

$LQCD$ is the only option for B physics ($B \Rightarrow \ell\nu$ too small to see)

Muon candidate consistent with min-I particle,

$<0.4 \text{ GeV} \text{ deposited in CsI} \quad (\text{too soft for muon detector})$

Key analysis variable: MM^2 missing-mass squared

$$MM^2 = (E_{beam} - E_\mu)^2 - (\vec{P}_{\text{tag}} - \vec{P}_\mu)^2$$

Resolution similar to m_π^2; pernicious $\pi^+\pi^0$ background!

(mis-ID π^+ and lose π^0 ... looks like signal!)
MM\(^2\) Distribution in MC & Data

MC

Simulation from BEFORE 1st data…

DATA

...looks just like real data!
(simul. was ~16x data)
\[D^+ \Rightarrow \mu^+ \nu_\mu \text{ Signal} \]

8 candidate events within \(2\sigma\) in \(MM^2\)

1.07 background events estimated

\(\Rightarrow\) **SIGNIFICANT SIGNAL**

Reconstruction efficiency \(\sim 70\%\)

\[B = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4} \]

\[f_D = (201 \pm 41 \pm 17) \text{ MeV} \]

Statistically limited: *easy to improve with more data*

Many systematics also improve w/ more data...
Pre-CLEO-c Semileptonics results

\[D^0 \rightarrow K^- e^+ \nu \quad \text{and} \quad D^0 \rightarrow \pi^- e^+ \nu \]

Decays with K are 10x more common than \(\pi \):
Separate via "particle ID" techniques (hard)

CLEO-c: excellent kinematic separation!

Recent CLEO (to appear in PRL)
World’s best

But note Kaons under pion peak...
Exclusive Semileptonic Decays

Test accuracy of LQCD form factors
Relate to B decay form factors (for V_{ub})
Direct Measurements of V_{cs} and V_{cd}

Use many hadronic modes for tag sample

Identify the remaining tracks/showers in the event;
define $U = E_{\text{miss}} - |P_{\text{miss}}|$ (should peak at 0)
CLEO-c Neutral D Tags

Individual modes

sum of 9 modes
Semileptonics: New CLEO-c results

\[D^0 \rightarrow K^- e^+ \nu \]

X-axes: \(U = E_{\text{miss}} - |P_{\text{miss}}| \)

\[D^0 \rightarrow \pi^- e^+ \nu \]

Kaons now safely to side of pion peak!

Points: data
Histogram: MC
Colors show MC prediction for source
Semileptonic Form Factors

pre CLEO-c:

Can use to help understand related B decays

$D^0 \Rightarrow K^- l^+ \nu$
$D^0 \Rightarrow \pi^- l^+ \nu$

CLEO-c pilot:
Other Semileptonic Modes

$D^0 \rightarrow K^{*-} e^+ \nu_e$

Very clean!

$D^0 \rightarrow \rho^- e^+ \nu_e$

First observation!
CLEO-c Reach for Semileptonics

Pilot run data already contains best measurements and first observations... (and I haven’t showed any D^+ today)

Planned data sample would literally re-write the Particle Data Group (PDG) listings!

\[
\begin{align*}
1: D^0 &\rightarrow K^- e^+ \nu \\
2: D^0 &\rightarrow K^*^- e^+ \nu \\
3: D^0 &\rightarrow \pi^- e^+ \nu \\
4: D^0 &\rightarrow \rho^- e^+ \nu \\
5: D^+ &\rightarrow \overline{K}^0 e^+ \nu \\
6: D^+ &\rightarrow \overline{K}^{0*} e^+ \nu \\
7: D^+ &\rightarrow \pi^0 e^+ \nu \\
8: D^+ &\rightarrow \rho^0 e^+ \nu \\
9: D_s &\rightarrow K^0 e^+ \nu \\
10: D_s &\rightarrow K^{*0} e^+ \nu \\
11: D_s &\rightarrow \phi e^+ \nu
\end{align*}
\]
Inclusive Electron Spectrum

Vastly improve measurements of the lepton spectra in $D \rightarrow X_{e\nu}$ for both D^{+} and D^{0} mesons.

(and D_{s} later on!)

Also extract inclusive semi-leptonic branching fractions.

Electron identification (cleaner than muons!)

optimized by studying radiative Bhabha events

use CsI calorimeter, dE/dx, and RICH info
Electron Spectra

Electron Momentum (GeV/c) from D^+

Statistical Uncertainty ~ 0.6

PDG: BR = (17.2±1.9)%

Electron Momentum (GeV/c) from D^0

Statistical Uncertainty ~ 0.5

PDG: BR = (6.75±0.29)%

(Systematic uncertainties not fully evaluated)

Will improve with added tag modes and luminosity
What CLEO-c replaces:

Inclusive leptons from charm:
Previous state-of-the-art

Delco 1979
(D₀ & D⁺ combined)

source of “secondary leptons”
at B factories
Other CLEO-c Physics

Now:

\[\psi(2S) \text{ decays: shedding light on mysteries;} \]
\[\text{observing many new decays} \]
\[h_c \text{ discovery (charmonium state)} \]
\[\text{Photon transitions among charmonia} \]

Future:

\[D_s: \text{ same type of studies as } D^{0/+} \]
\[J/\psi: \text{ source of gluon-rich decays} \]
\[\text{studies of hadronic spectroscopy} \]
Physics from the $\psi(2S)$ Sample

Light charmonium spectroscopy

h_c discovery
(new charmonium state)

$\psi(2S) \Rightarrow \chi_{cJ} \gamma$
Photon Transition Lines

![Graph of h_c mass recoiled from π^0](image1)
![Graph of photon transition lines](image2)
Physics from the $\psi(2S)$ Sample

Our New Results:

Compiled with 12% rule:

6 new modes observed! : $\omega \pi^0$, $\rho \eta$, $\phi \eta$, $K^*0 K^0$, $K^+ K^-$, $b_1^0 \pi^0$

(can add more non-PV modes as well...)
Summary and Outlook

CLEO-c Detector and CESR-c Ring are working well
12 wigglers in for recent (Sep/Oct '04) data-taking
 Added ~40 pb$^{-1}$ to current ~60 pb$^{-1}$ at the $\psi(3770)$,
 More running mid-Dec '04 to 1 Apr '05
 (with prospect of increased performance!)
 Later, D_s physics, followed by J/ψ

Many results already headed for publication:
 Absolute hadronic BR's (and $D\bar{D}$ cross sections)
 First significant determination of f_D
 Inclusive lepton spectrum and BR
 Exclusive semileptonic rates and form factors
 $\psi(2S)$ decays, h_c discovery, ...
Acknowledgments

CLEO Colleagues:
~140 now; perhaps 350+ over my 9+ years
Built detectors, took data, performed analyses, ...
And local colleagues: T. Ferguson, H. Vogel, etc.

CESR Physicists:
For 25 years of unparalleled innovation and luminosity

LEPP Staff:
Invaluable Support

And a special thanks to:
Marina Artuso, Ian Shipsey, & Dave Rice
for leading the CLEO-c/CESR-c Task Forces
that made it all happen