Summary for the Test Stand Status

<table>
<thead>
<tr>
<th></th>
<th>System</th>
<th>Capability</th>
<th>Ubiquity</th>
<th>Equipment</th>
<th>Preparedness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Board Test Stand</td>
<td>Windows 95</td>
<td>Board Quality Quick Test</td>
<td>ACC</td>
<td>Full Set</td>
<td>Ready, Sent to ACC</td>
</tr>
<tr>
<td>Quick Chip Test Stand</td>
<td>Windows 95</td>
<td>Chip Quality Quick Test</td>
<td>Fermilab</td>
<td>Full Set</td>
<td>Ready</td>
</tr>
<tr>
<td>Final Test Stand</td>
<td>Linux</td>
<td>Full Test</td>
<td>Main Set</td>
<td>Under construct</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1 Quick Chip Test Stand, Hardware Scheme.
Fig. 2 Quick Board Test Stand

- **Pulses = 0**
- **Pulses < Pulses Down**
- **Pulses > Pulses Up**
- **Pulses = Pulses Max**
- **Pulses > Pulses Max**

If **Pulses > Pulses Down**
and **Pulses < Pulses Up**

- **Dac > Dac Down**
- **Dac < Dac Down**
- **Dac > Dac Up**
- **Dac < Dac Up**

Chip 1, channels 1..16
Chip 2, channels 1..16
Visual Control for Two Chips
Threshold Efficiency (Number of the pulses vs Dac code)

Color of the curve in the Threshold efficiency:

1. Pulses equal 0
2. Pulses not equal 0 and Pulses less then Pulses Down.
3. Pulses equal Pulses Max
4. Pulses not equal Pulses Max and Pulses less then Pulses Down.
5. Pulses greater then Pulses Down and Pulses less then Pulses Up
 a) Dac less then Dac Down
 b) Dac greater then Dac Up
 c) Dac between Dac Up and Dac Down
6. Pulses greater then Pulses Max
Fig. 3 ADB16 Board Test Stand, Hardware Scheme.
Efficiency Measurements

Raw table for each chip
Pulse Number vs DAC code

Calculating Parameters for the Each Channel

Threshold RMS Noise
Threshold Error Noise Error
“Bad” channel selection

Summary Parameters for the chip
Visual Control for “bad” Efficiency

Exceeding Parameters
Check for Good Efficiency

1. Minimal Threshold
2. Maximal Threshold
3. Maximal Threshold Error
4. Maximal Noise
5. Maximal Noise Error

1. Threshold Region
2. Max Threshold
3. Max Noise
Delay Measurements

- Raw table for each chip
- Delay vs DAC code

Calculating Parameters for the Each Channel

- Minimal Delay
- Maximal Delay
- Slewing Time
- "Bad" channel selection

Summary Parameters for the chip

- 1. Minimal Delay
- 2. Maximal Delay
- 3. Slewing Time for Whole Chip
- 4. Maximal Channel Slewing Time

Visual Control for "bad" Delay

Exceeding Parameters

- Check for Good Delay Characteristic

- 1. Delay Region
- 2. Max Channel Slewing Time
- 3. Max Chip Slewing Time