INFLATION FROM WRAPPED BRANES

Sarah Shandera Columbia University

Based on: M. Becker, L. Leblond, S. S. (arXiv:0709:1170); M. LoVerde, A. Miller, S.S., L. Verde (arXiv:0711.4126): R. Bean, S.S., H. Tye, J. Xu (hep-th/ 0702107)

Can string theory suggest cosmologically interesting ideas?

- or -

Is there a useful discriminating feature of inflation models?

- or -

Could there be *distinctive* signatures of string theory in inflation?

and the birther and the state of the

I.Why care? (DBI as a pheno model: non-Gaussianity, tensor/scalar ratio)

II. The wrapped brane inflaton (Relating observables to microphysics and extending the field range)

III. Matching observations with a wrapped brane

IV. Consistency?

I.WHY DBI?

Carnegie Mellon, Nov. 14, 2007

WHAT DO WE WANT FROM INFLATION?

- Enough e-folds (flat potential?)
- Spectrum of primordial fluctuations (amplitude, scaledependence, correlation functions)
- Other observables?

THE (FIELD THEORY) PICTURE

A Capital Contraction of the second of the state

(ORIGINAL) BRANE INFLATION

Inflaton ~ Brane separation

 Brane/anti-brane potential from closed string exchange

 Reheating and cosmic strings from brane annihilation

> Carnegie Mellon, Jan. 16, 2008

Dvali and Tye; Garcia-Bellido, Rabadan, Zamora; Burgess et al.

THE BIG PICTURE...

Lord and Shall want of the

3 + I dimensions (us) X

X

6 compact dimensions

CARTOON GUIDE TO BRANE INFLATION (IN IIB)

D7 D3 D3. Kallosh; Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi; X. Chen; Dasgupta, Herdeiro, Hirano,

Features: Mobile D3s KS throats anti-D3s in throats Wrapped D7s

WHY USE THE THROAT?

Contracted States of Marce Land V

- Warping helps flatten the brane/anti-brane potential
- Metric is known
- Details of the bulk can be largely ignored
- Warping gives interesting features

THE DBI ACTION

delighter and and the second a literated

Dynamics (Silverstein, Tong, Alishahiha)

$$S = -\int d^4x \, a(t)^3 f(\phi)^{-1} \sqrt{1 - f(\phi)\dot{\phi}^2} + V(\phi)$$

• Geometry (Klebanov, Strassler)

$$ds^{2} = h^{-1/2}(r)\eta_{\mu\nu}dx^{\mu}dx^{\nu} + h^{1/2}(r)(dr^{2} + r^{2}ds^{2}_{T^{1,1}})$$

$$f(\mathbf{\phi}) = S^{-1}h(\mathbf{\phi}) = T_3^{-1}h(\mathbf{\phi})$$

THE DBI ACTION

Dynamics (Silverstein, Tong, Alishahiha)

Assume quadratic

$$S = -\int d^4x \, a(t)^3 f(\phi)^{-1} \sqrt{1 - f(\phi)\dot{\phi}^2} + V(\phi)$$

Geometry (Klebanov, Strassler)

$$ds^{2} = h^{-1/2}(r)\eta_{\mu\nu}dx^{\mu}dx^{\nu} + h^{1/2}(r)(dr^{2} + r^{2}ds_{T^{1,1}}^{2})$$

$$f(\mathbf{\phi}) = S^{-1}h(\mathbf{\phi}) = T_3^{-1}h(\mathbf{\phi})$$

THE DBIACTION

Line and Base warmen a Charge to

Dynamics (Silverstein, Tong, Alishahiha)

Assume quadratic

$$S = -\int d^4x \, a(t)^3 f(\phi)^{-1} \sqrt{1 - f(\phi)\dot{\phi}^2} + V(\phi)$$

• Geometry (Klebanov, Strassler)

normalization

$$ds^{2} = h^{-1/2}(r)\eta_{\mu\nu}dx^{\mu}dx^{\nu} + h^{1/2}(r)(dr^{2} + r^{2}ds_{T^{1,1}}^{2})$$

$$f(\mathbf{\phi}) = \mathbf{S}^{-1}h(\mathbf{\phi}) = T_3^{-1}h(\mathbf{\phi})$$

THE DBI ACTION

Land and the second of the

Dynamics (Silverstein, Tong, Alishahiha)

Assume quadratic

$$S = -\int d^4x \, a(t)^3 f(\phi)^{-1} \sqrt{1 - f(\phi)\dot{\phi}^2} + V(\phi)$$

• Geometry (Klebanov, Strassler)

$$ds^{2} = h^{-1/2}(r)\eta_{\mu\nu}dx^{\mu}dx^{\nu} + h^{1/2}(r)(dr^{2} + r^{2}ds_{T^{1,1}}^{2})$$

$$f(\phi) = \frac{S^{-1}h(\phi)}{T_3^{-1}h(\phi)}$$

normalization D3 brane

DBI FEATURES

 From the DBI action, there is an effective speed limit set by the warping:

$$\dot{\phi}^2 < f(\phi)^{-1} = Sh(\phi)^{-1}$$

 $h \approx \frac{R^4}{r^4} = \frac{R^4 T_3^2}{\phi^4}$

Lorentz factor:

$$\gamma(\phi) = \frac{1}{\sqrt{1 - f(\phi)\dot{\phi}^2}}$$

FRAMEWORK FOR CALCULATING OBSERVABLES

* modified Hubble slow roll parameters

$$\varepsilon_D \equiv \frac{2M_p^2}{\gamma} \left(\frac{H'(\phi)}{H(\phi)}\right)^2$$

$$\eta_D \equiv \frac{2M_p^2}{\gamma} \left(\frac{H''(\phi)}{H(\phi)} \right)$$

$$\kappa_D \equiv \frac{2M_p^2}{\gamma} \left(\frac{H'\gamma'}{H\gamma}\right)$$

$$\frac{\ddot{a}}{a} = H^2(1 - \varepsilon_D)$$

$$\dot{\phi} = -\frac{2M_p^2 H'}{\gamma}$$

SOME OBSERVABLES

2 La Cartelline mars alle

scalar index

$$n_s-1\approx-4\varepsilon+2\eta-2\kappa$$

tensor index

$$n_t = \frac{-2\varepsilon}{1 - \varepsilon - \kappa}$$

• tensor/scalar ratio

$$r = \frac{16\varepsilon}{\gamma}$$

$$n_t = -\frac{r}{8} \left(\frac{\gamma}{1 - \varepsilon - \kappa} \right)$$

RELATION BETWEEN DEFINITIONS

$$\varepsilon_D = -\frac{\dot{H}}{H^2} \rightarrow \varepsilon_{SR}$$
$$\eta_D \rightarrow \eta_{SR} - \varepsilon_{SR}$$
$$\kappa_D = \frac{\dot{c}_s}{c_s H} = s$$
$$\tilde{\eta} = \frac{\dot{\varepsilon}}{\varepsilon H} = 2\varepsilon_D - 2\eta_D + \kappa$$

CONSTRAINTS

- 55 e-folds in the throat
- Inflation ends when brane separation is small (or expansion parameters become > 1)
- Throat is smaller than bulk (volume bound)
- COBE normalization matched

*explore non-Gaussianity, tensor-scalar ratio, etc.

NON-GAUSSIANITY

NON-GAUSSIANITY

• Higher order correlations have more information!

tention of the state of the state of the state

- Size (Slow-roll or not? DBI: "f_{NL}"~γ⁻²)
- Sign (More or less structure? DBI has less)
- Shape
- Scale-dependence

(What kind of physics?)

THE LOCAL MODEL

Low Anterior Martin and a state

• A simple ansatz:

$$\zeta(x) = \zeta_g(x) + f_{NL} \left[\zeta_g^2(x) - \langle \zeta_g^2(x) \rangle \right]$$

• Then in Fourier space:

$$\begin{split} \langle \zeta_{NG}(k_1)\zeta_{NG}(k_2)\rangle &= \langle \zeta_G(k_1)\zeta_G(k_2)\rangle + O(f_{NL}^2)\\ &\approx (2\pi)^3\delta(k_1+k_2)\frac{2\pi^2\mathcal{P}^{\zeta_G}(k)}{k^3} \end{split}$$

$$\langle \zeta_{NG}(k_1)\zeta_{NG}(k_2)\zeta_{NG}(k_3)\rangle = f_{NL}\frac{(2\pi)^7}{2}\delta^3(k_1+k_2+k_3)\left(\frac{\mathcal{P}^{\zeta_G}(k_1)\mathcal{P}^{\zeta_G}(k_2)}{k_1^3k_2^3} + \text{perm.}\right) + \mathcal{O}(f_{NL}^3)$$

HOW NON-GAUSSIAN? (SMOOTH MODELS)

- Slow-roll (squeezed limit): $f_{NL} \sim -(n_s 1)$ (Maldacena)
- EFT suggests adding higher derivative terms gives $f_{NL} \sim 1$ (Creminelli; 'equilateral model')
- DBI: Observationally limited (saturates CMB bound) (Silverstein, Tong)
 - Surprisingly large: the square root sums an infinite number of powers of the derivative; similar effect found in tachyon actions (Barnaby, Cline)

DBI NON-GAUSSIANITY

DBI is a subset of small sound speed models,

$$c_s^2 = \frac{\partial p}{\partial \dot{\phi}} / \frac{\partial \rho}{\partial \dot{\phi}} = \frac{1}{\gamma^2}$$

The Ander Store and the Part take

(SEERY, LIDSEY; CHEN, HUANG, KACHRU, SHIU)

 DBI 3-point is largest in the equilateral limit (local is largest in squeezed limit)

• Current CMB bound:

$$f_{NL}^{eff}(k_1 = k_2 = k_3)$$
$$-256 < f_{NL}^{eq} < 332$$

(CREMINELLI ET AL.)

SCALE-DEPENDENCE

For DBI:
$$c_s(k) = c_s^{pivot} \left(\frac{k}{k_{pivot}}\right)^{\kappa}$$

Defining an effective f_{NL} from the equilateral limit:

A Charles and the second of the state

$$f_{NL}^c = -\frac{35}{108} 3^{2(n_s - 1)} \left(\frac{1}{c_s^2} - 1\right)$$

 We can use the DBI case to suggest an ansatz, with K a free parameter

$$f_{NL}^{eq}(k) = f_{NL, \, pivot}^{eq} \left(\frac{k}{k_{pivot}}\right)^{-2\kappa}$$

THE CMB IS ONLY THE BEGINNING...

Carnegie Mellon, Jan. 16, 2008

(WMAP 3, Spergel et al.)

RELEVANT OBSERVATIONS

Low Martin Block of Martin School 62

PHYSICALLY (LOCAL MODEL)...

$$k^2 \zeta = 4\pi G a^2 \delta \rho.$$

+f_{NL}=more clusters

OBSERVABLES

and submission of the states that

CMB

- Cluster number counts
- Galaxy bispectrum

Analysis on the next slide from arXiv:0711.4126, M. LoVerde, A. Miller, L. Verde, S.S.

SO HOW WELL CAN WE DO?

We want to an a strain the star

Info.	Fiducial Model		$\sigma_{\mathbf{\Omega}_{\mathbf{m}}}$	$\sigma_{\mathbf{h}}$	σ_{σ_8}	$\sigma_{\mathbf{f_{NL}}}$	σ_{κ}
WMAP			0.0264	0.029	0.046	150	-
$\mathbf{WMAP} + dN/dz$	$f_{NL}^{eq} = 38$	$\kappa = 0$	0.0080	0.029	0.026	150	1.69
"	$f_{NL}^{eq} = 38$	$\kappa = -0.3$	0.011	0.029	0.032	150	1.20
11	$f_{NL}^{eq} = -256$	$\kappa = 0$	0.0076	0.029	0.022	150	0.17
11	$f_{NL}^{eq} = -256$	$\kappa = -0.3$	0.0089	0.029	0.022	149	0.14
11	$f_{NL}^{eq} = 332$	$\kappa = 0$	0.010	0.029	0.034	150	0.40
//	$f_{NL}^{eq} = 332$	$\kappa = -0.3$	0.011	0.029	0.034	150	0.23
Planck			0.0084	0.011	0.015	40	
Planck + dN/dz	$f_{NL}^{eq} = 38,$	$\kappa = 0.0$	0.0058	0.011	0.014	40	1.00
11	$f_{NL}^{eq} = 38$	$\kappa = -0.3$	0.0070	0.011	0.015	40	0.47
//	$f_{NL}^{eq} = -256$	$\kappa = 0$	0.0053	0.011	0.013	40	0.09
//	$f_{NL}^{eq} = -256$	$\kappa = -0.3$	0.0061	0.011	0.013	40	0.09
11	$f_{NL}^{eq} = 332$	$\kappa = 0$	0.0066	0.011	0.015	40	0.19
//	$f_{NL}^{eq} = 332$	$\kappa = -0.3$	0.0068	0.011	0.015	40	0.11

$$(\Omega_m = 0.24, h = 0.73, \sigma_8 = 0.77, \kappa = 0)$$

SO HOW WELL CAN WE DO?

We want to an a strain the start of the start

Info.	Fiducial Model		$\sigma_{\mathbf{\Omega}_{\mathbf{m}}}$	$\sigma_{\mathbf{h}}$	σ_{σ_8}	$\sigma_{\mathbf{f_{NL}}}$	σ_{κ}
WMAP	and interna		0.0264	0.029	0.046	150	
$\mathbf{WMAP} + dN/dz$	$f_{NL}^{eq} = 38$	$\kappa = 0$	0.0080	0.029	0.026	150	1.69
"	$f_{NL}^{eq} = 38$	$\kappa = -0.3$	0.011	0.029	0.032	150	1.20
11	$f_{NL}^{eq} = -256$	$\kappa = 0$	0.0076	0.029	0.022	150	0.17
11	$f_{NL}^{eq} = -256$	$\kappa = -0.3$	0.0089	0.029	0.022	149	0.14
11	$f_{NL}^{eq} = 332$	$\kappa = 0$	0.010	0.029	0.034	150	0.40
//	$f_{NL}^{eq} = 332$	$\kappa = -0.3$	0.011	0.029	0.034	150	0.23
Planck			0.0084	0.011	0.015	40	
Planck + dN/dz	$f_{NL}^{eq} = 38,$	$\kappa = 0.0$	0.0058	0.011	0.014	40	1.00
//	$f_{NL}^{eq} = 38$	$\kappa = -0.3$	0.0070	0.011	0.015	40	0.47
//	$f_{NL}^{eq} = -256$	$\kappa = 0$	0.0053	0.011	0.013	40	0.09
//	$f_{NL}^{eq} = -256$	$\kappa = -0.3$	0.0061	0.011	0.013	40	0.09
11	$f_{NL}^{eq} = 332$	$\kappa = 0$	0.0066	0.011	0.015	40	0.19
//	$f_{NL}^{eq} = 332$	$\kappa = -0.3$	0.0068	0.011	0.015	40	0.11

$$(\Omega_m = 0.24, h = 0.73, \sigma_8 = 0.77, \kappa = 0)$$

ASPECTS NG MAY TEST

UV (NG increases on small scales) vs. IR (NG decreases on small scales)

· Contractions - server - Charattere

- Deformed conifold: κ = 0
- Features (bumps in the potential or the warp factor)
- Deviations from Bunch-Davies? (Holman, Tolley)
- All scale-dependent

MAPPING THE WARP FACTOR

A Charles and the second states the

Here κ is a slow-roll parameter; can consider larger $|\kappa|$ if spectrum is computed numerically

IN THE FUTURE...

- Recent analysis finds a NG signal in CMB (Yadav, Wandelt, f_{NL}~90)
- No matter the eventual fate of that result, NG is such a powerful discriminator that it should continue to be probed at all possible scales

FIELD RANGE AND OBSERVABLES

LYTH BOUND

• Field range is related to tensor/scalar ratio:

States Ander States and States

$$\frac{1}{M_p} \frac{d\phi}{dN_e} = \sqrt{\frac{r}{8}}$$

- Sub-planckian field range implies r < 0.01 (barely detectable) if r is constant
- Can be larger if r changes rapidly (e.g., if sound speed decreases)

REMINDER: CHAOTIC INFLATION

 Usually, quadratic potential requires trans-Planckian field range

$$V(\phi) = \frac{m^2 \phi^2}{2}$$

$$\varepsilon < 1 \Rightarrow \frac{\phi}{M_p} > \sqrt{2}$$

$$H(\phi) = h_n \phi^n$$

$$\varepsilon = \frac{2M_p^2}{\gamma} \left(\frac{H'}{H}\right)^2 < 1 , \Rightarrow \frac{\phi}{M_p} > n\sqrt{\frac{2}{\gamma}}$$

FUNDAMENTAL QUANTITIES AND OBSERVABLES

Field Range: canonical inflaton, 4D Planck mass:

Relating the modulus field to the canonical inflaton:

$$\phi = \sqrt{S}\rho$$

 $\overline{M_p}$

Volume and Planck mass:

$$M_p^2 = \frac{V_6^w}{\kappa_{10}^2} = \frac{2V_6^w}{(2\pi)^7 g_s^2 \alpha'^4}$$

THROAT DETAILS

Contracted State operation of Character

THE D3 BRANE FIELD RANGE PROBLEM

The smallest possible compact volume is the throat volume:

$$V_6^w \sim V_6^{throat} = \int_0^{\rho_{UV}} d\rho \ \rho^5 h(\rho) \int d\Omega_{X_5}$$
$$= 2\pi^4 g_s N^2 \rho_{UV}^2$$

• Then, the field range is:

CONFLICT WITH OBSERVATION?

Non-Gaussianity and the tensor/scalar ratio:

$$\left(\frac{\Delta\phi}{M_p}\right)^2 = \frac{32}{r\gamma^2}$$

• COBE normalization:

$$N \gtrsim 10^8 Vol(X_5)$$

Need small background charge, large orbifolding:

$$Vol(X_5) \sim (\pi)^3 \to 10^{-7}$$

(Baumann, McAllister)

SUMMARY SO FAR...

Line and Share a second of the

- DBI brane inflation suggests an alternative to requiring a flat potential; worthwhile to try to realize DBI inflation
- This comes along with large, scale-dependent non-Gaussianity and maybe observable gravitational waves
- DBI with a D3 brane struggles(!) to match data
- Regardless of the viability of DBI, suggests interesting ways to distinguish inflation scenarios
 Carnegie Mell

II. THE WRAPPED BRANE INFLATON

THE WARPED DEFORMED CONIFOLD

• In the UV (away from the tip) $X_5 = T^{1,1}$

- In the IR, S² shrinks to zero size; S³ finite volume
- warp factor approaches a constant:

$$h(r_0) = \frac{R^4}{r_0^4} = e^{8\pi K/(3g_s M)}$$

WRAPPING A D5-BRANE

A Charles and a second second to

(Kobayashi, Mukohyama, Kinoshita; Becker, Leblond, S.S.)

EXTENDING THE FIELD RANGE

• Orbifolding S2 or S3:

$$\int_{S^2} d\Omega_2 \to \frac{1}{a} \int_{S^2} d\Omega_2$$

- Wrapping number p
- Then the normalization is

$$S = \frac{4\pi R^2 p}{3 a} T_5$$

$$\left(\frac{\Delta\phi}{M_p}\right)^2 \le \frac{2^3\pi p}{3 a} \left(\frac{g_s}{N_v}\right)$$

III. MATCHING OBSERVATIONS

THREE DIMENSIONLESS VARIABLES

Inflaton mass:

$$A \equiv H' = \frac{m}{\sqrt{6}M_p}$$

• Field range:

$$B \equiv \frac{\phi}{M_p}$$

Normalization:

OBSERVATIONAL CONSTRAINTS

Power spectrum normalization:

$$P_S = \frac{H^4 \gamma^2}{16\pi^2 M_p^4 H'^2} = \frac{A^4 C}{4\pi^2} \sim 2 \times 10^{-9}$$

Non-Gaussianity:

$$|f_{NL}^{eq.}| < 256$$
 $\gamma \sim 2M_p^2 f(\phi)^{1/2} H' = \frac{2\sqrt{C}A}{B^2} < 30$

Tensor/Scalar ratio:

$$r = \frac{32M_p^2}{\gamma^2 \phi^2} = \frac{8B^2}{CA^2} < 0.3$$

CONSTRAINTS ON FUNDAMENTAL PARAMETERS

Example point: N~ 10^4 , v=1/40; y=25, r=0.29

LYTH BOUND REVISITED

- Lord and Black and a Character

Observationally, Lidsey and Huston find

r>0.002

For a D3, the result was

r<10-7

 Assuming that r is constant on the scale of roughly 1 e-fold, the Lyth bound with a wrapped D5 gives

r<0.04

CLUES FROM THE D3 CASE?

- Lots of caveats:
 - Haven't computed number of e-folds
 - Haven't considered realistic throat geometry

Anteriore and Street Late

 Monte-Carlo for D3 brane case, without imposing volume constraint (there are other ways to extend the field range) (hep-th/0702107, R. Bean, S.S., H. Tye, J. Xu)

IV. CONSISTENCY ISSUES

SOME POINTS OF CONCERN

Sand Martines, which Plants

- What is the potential really?
- Back-reaction of the brane on the geometry?
- Is this a good "low" energy description?

SOME POSSIBLE POTENTIALS

- Low Andrews of the Stand to

$$S_{CS} = \mu_5 \int P[C_6 + C_4(B_2 + 2\pi F)]$$

Chern-Simons term:

$$=\mu_5 2\pi \int d^4x \left(\frac{3M}{4h} + \frac{1}{g_s h} (3g_s M \ln(\phi/\phi_0) + 2\pi q)\right)$$

$$H(\phi) = h_n \phi^n$$

- Other power laws?
 - n=2 inflates for smaller field range
 - n>3 require trans-planckian field range

SIMPLISTIC BACKREACTION

Contraction of the second of the

 Examining the perturbation to the radial warp factor due to the brane:

$$\frac{p\gamma}{a} \ll \sqrt{\frac{Nv}{g_s}}$$

With bounds from data, this gives:

$$\gamma \ll \sqrt{\frac{Nv}{g_s}} \frac{a}{p} \ll 10^{3/2}$$

SIMPLISTIC BACKREACTION

Contractional and the

 Examining the perturbation to the radial warp factor due to the brane:

$$\frac{p\gamma}{a} \ll \sqrt{\frac{Nv}{g_s}}$$

With bounds from data, this gives:

$$\gamma \ll \sqrt{\frac{Nva}{g_s p}} \ll 10^{3/2}$$

And for D3: $\gamma T_3 < NT_3$ $\Rightarrow \gamma \ll 36$

KK MODES

• We would like to ignore all fields except the inflaton:

States and the state of the states

 $\left(m_{KK}^{w} > H\right)$

KK modes at the bottom of the throat have warped masses

$$\frac{1}{R}\frac{\phi_{IR}}{\phi_{UV}} > H_{max} = A\phi_{max}$$

$$h_{IR}^{-1/4} > A\sqrt{SR^2} = A\sqrt{C}$$

Number of e-folds?

$$N_e = A\sqrt{C}\log(h_{IR}^{1/4})$$

CONCLUSIONS

 Fundamental moduli space translates to constraints on canonical inflaton field range (matches expectations from EFT)

the autorities a survey of the

- For brane inflation, the relationship depends on the dimensionality
- DBI with a wrapped brane can match observational data in the most optimistic case, but:
 - Many concerns other than field range

SOME FINAL OPTIMISM...

a for and the second of the state

- DBI inflation has suggested an alternative to standard slow-roll with observable features
- Non-Gaussianity is especially useful and leads to new ideas for observationally distinguishing models
- DBI emphasizes importance of moduli space
- Inflation is a useful context to investigate warped supersymmetry breaking

GENERAL SOUND SPEED

$$\langle \zeta(\vec{k_1})\zeta(\vec{k_2})\zeta(\vec{k_3})\rangle = (2\pi)^7 \delta^3(\vec{k_1} + \vec{k_2} + \vec{k_3}) \frac{\mathcal{P}^{\zeta}(K)^2}{k_1^3 k_2^3 k_3^3} (\mathcal{A}_{\lambda} + \mathcal{A}_c + \mathcal{A}_o + \mathcal{A}_{\varepsilon} + \mathcal{A}_{\eta} + \mathcal{A}_s)$$

della the formation and the second of the state

$$K = k_1 + k_2 + k_3$$

(CHEN, HUANG, KACHRU, SHIU)

Current CMB bound: $f_{NL}^{eff}(k_1 = k_2 = k_3)$

 $-256 < f_{NL}^{eq} < 332$ (Creminelli et al.)

GENERAL SOUND SPEED

A Charles I and an and the a convert of these takes

(CHEN, HUANG, KACHRU, SHIU)

Current CMB bound: $f_{NL}^{eff}(k_1 = k_2 = k_3)$

 $-256 < f_{NL}^{eq} < 332$ (Creminelli et al.)

GENERAL SOUND SPEED

Low anterious annus all dens to

$$\langle \zeta(\vec{k}_{1})\zeta(\vec{k}_{2})\zeta(\vec{k}_{3})\rangle = (2\pi)^{7}\delta^{3}(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3})\frac{\mathcal{P}^{\zeta}(K)^{2}}{k_{1}^{3}k_{2}^{3}k_{3}^{3}}(\mathcal{A}_{\lambda}+\mathcal{A}_{c}+\mathcal{A}_{o}+\mathcal{A}_{\varepsilon}+\mathcal{A}_{\eta}+\mathcal{A}_{s})$$

$$(K = k_{1}+k_{2}+k_{3})$$

$$(K = k_{1}+k_{3}+k_$$

(CHEN, HUANG, KACHRU, SHIU)

Current CMB bound: $f_{NL}^{eff}(k_1 = k_2 = k_3)$

 $-256 < f_{NL}^{eq} < 332$ (Creminelli et al.)

TWO COMPARISONS

COLORADOR AND STA

 $(\mathcal{A}_{local} - \mathcal{A}_{c})/\mathcal{A}_{c}$

