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Can string theory suggest 
cosmologically interesting ideas?

Could there be distinctive signatures 
of string theory in inflation?

- or -

- or -

Is there a useful discriminating feature 
of inflation models?
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GOALS:

I. Why care? (DBI as a pheno model: non-Gaussianity, 
tensor/scalar ratio)

II. The wrapped brane inflaton (Relating observables 
to microphysics and extending the field range)

III. Matching observations with a wrapped brane

IV. Consistency?



I. WHY DBI?

Carnegie Mellon, 
Nov. 14, 2007
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WHAT DO WE WANT FROM 
INFLATION?

Enough e-folds (flat potential?)

Spectrum of primordial fluctuations (amplitude, scale-
dependence, correlation functions)

Other observables?
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THE (FIELD THEORY) PICTURE
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Brane/anti-brane 
potential from 
closed string 
exchange

Reheating and 
cosmic strings 
from brane 
annihilation

Dvali and Tye; Garcia-
Bellido, Rabadan, 

Zamora; Burgess et al.

(ORIGINAL) BRANE 
INFLATION

Inflaton ~ Brane separation



THE BIG PICTURE...

X

3 + 1 dimensions (us) 6 compact 
dimensionsX
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CARTOON GUIDE TO BRANE 
INFLATION (IN IIB)

Features:

Mobile D3s

KS throats

anti-D3s in 
throats

Wrapped D7s

D7

D3

D3

D3

D3

Kallosh; Kachru, Kallosh, Linde, 
Maldacena, McAllister, Trivedi; 
X. Chen; Dasgupta, Herdeiro, 

Hirano,
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WHY USE THE THROAT?

Warping helps flatten the brane/anti-brane potential

Metric is known

Details of the bulk can be largely ignored

Warping gives interesting features
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Dynamics (Silverstein, Tong, Alishahiha)

Geometry (Klebanov, Strassler)

THE DBI ACTION

ds2 = h−1/2(r)ηµνdxµdxν +h1/2(r)(dr2 + r2ds2
T 1,1)

S =−
Z

d4x a(t)3 f (φ)−1
√

1− f (φ)φ̇2 +V (φ)

f (φ) = S−1h(φ) = T−1
3 h(φ)
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Dynamics (Silverstein, Tong, Alishahiha)

Geometry (Klebanov, Strassler)

THE DBI ACTION

ds2 = h−1/2(r)ηµνdxµdxν +h1/2(r)(dr2 + r2ds2
T 1,1)

Assume quadratic

S =−
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d4x a(t)3 f (φ)−1
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Geometry (Klebanov, Strassler)

THE DBI ACTION

ds2 = h−1/2(r)ηµνdxµdxν +h1/2(r)(dr2 + r2ds2
T 1,1)

Assume quadratic

S =−
Z

d4x a(t)3 f (φ)−1
√

1− f (φ)φ̇2 +V (φ)

normalization

f (φ) = S−1h(φ) = T−1
3 h(φ)
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Dynamics (Silverstein, Tong, Alishahiha)

Geometry (Klebanov, Strassler)

THE DBI ACTION

ds2 = h−1/2(r)ηµνdxµdxν +h1/2(r)(dr2 + r2ds2
T 1,1)

D3 brane

Assume quadratic

S =−
Z

d4x a(t)3 f (φ)−1
√

1− f (φ)φ̇2 +V (φ)

normalization

f (φ) = S−1h(φ) = T−1
3 h(φ)
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From the DBI action, there is an effective speed 
limit set by the warping:

Lorentz factor: 

DBI FEATURES

γ(φ) =
1√

1− f (φ)φ̇2

h≈ R4

r4 =
R4T 2

3
φ4

φ̇2 < f (φ)−1 = Sh(φ)−1
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FRAMEWORK FOR 
CALCULATING OBSERVABLES

 modified Hubble slow roll parameters

ηD ≡
2M2

p

γ

(
H ′′(φ)
H(φ)

)

εD ≡
2M2

p

γ

(
H ′(φ)
H(φ)

)2

κD ≡
2M2

p

γ

(
H ′

H
γ′

γ

)

ä
a

= H2(1− εD)

φ̇ = −
2M2

pH ′

γ
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scalar index

tensor index

tensor/scalar ratio

SOME OBSERVABLES

r =
16ε

γ

nt =
−2ε

1− ε−κ

ns−1≈−4ε+2η−2κ

nt =−r
8

(
γ

1− ε−κ

)
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RELATION BETWEEN 
DEFINITIONS

εD =− Ḣ
H2 → εSR

η̃ =
ε̇

εH
= 2εD−2ηD +κ

κD =
ċs

csH
= s

ηD→ ηSR− εSR
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CONSTRAINTS

55 e-folds in the throat

Inflation ends when brane separation is small (or 
expansion parameters become > 1)

Throat is smaller than bulk (volume bound)

COBE normalization matched

explore non-Gaussianity, tensor-scalar ratio, etc.



NON-GAUSSIANITY
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NON-GAUSSIANITY

Higher order correlations have more information!

Size (Slow-roll or not? DBI: “fNL”~γ-2)

Sign (More or less structure? DBI has less)

Shape 

Scale-dependence
(What kind of physics?)
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THE LOCAL MODEL

A simple ansatz:

Then in Fourier space:

ζ(x) = ζg(x)+ fNL
[
ζ2

g(x)−〈ζ2
g(x)〉

]

+O( f 3
NL)

〈ζNG(k1)ζNG(k2)ζNG(k3)〉 = fNL
(2π)7

2
δ3(k1 + k2 + k3)

(
P ζG(k1)P ζG(k2)

k3
1k3

2
+perm.

)

〈ζNG(k1)ζNG(k2)〉 = 〈ζG(k1)ζG(k2)〉+O( f 2
NL)

≈ (2π)3δ(k1 + k2)
2π2P ζG(k)

k3
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HOW NON-GAUSSIAN?
(SMOOTH MODELS)

Slow-roll (squeezed limit):                     (Maldacena)

EFT suggests adding higher derivative terms gives          
(Creminelli; ‘equilateral model’)

DBI: Observationally limited (saturates CMB bound)
(Silverstein, Tong)

 Surprisingly large: the square root sums an infinite number of powers 
of the derivative; similar effect found in tachyon actions (Barnaby, Cline)

fNL ∼−(ns−1)

fNL ∼ 1
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DBI NON-GAUSSIANITY

DBI is a subset of small sound speed models,

DBI 3-point is largest in the equilateral limit (local is 
largest in squeezed limit)

Current CMB bound: 

(Seery, Lidsey; Chen, 
Huang, Kachru, Shiu)c2

s =
∂p
∂φ̇

/
∂ρ
∂φ̇

=
1
γ2

(Creminelli et al.)
−256 < f eq

NL < 332

f e f f
NL (k1 = k2 = k3)
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SCALE-DEPENDENCE

Defining an effective fNL from the equilateral limit:

We can use the DBI case to suggest an ansatz, with κ 
a free parameter

f c
NL =− 35

108
32(ns−1)

(
1
c2

s
−1

)

f eq
NL(k) = f eq

NL, pivot

(
k

kpivot

)−2κ

cs(k) = cpivot
s

(
k

kpivot

)κ

For DBI:
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THE CMB IS ONLY THE 
BEGINNING...

– 20 –

Fig. 5.— The prediction for the small-scale angular power spectrum seen by

ground-based and balloon CMB experiments from the ΛCDM model fit to the
WMAP data only. The colored lines show the best fit (red) and the 68% (dark

orange) and 95% confidence levels (light orange) based on fits of the ΛCDM
models to the WMAP data. The points in the figure show small scale CMB

measurements (Grainge et al. 2003; Ruhl et al. 2003; Abroe et al. 2004; Kuo
et al. 2004; Readhead et al. 2004a). The plot shows that the ΛCDM model (fit
to the WMAP data alone) can accurately predict the amplitude of fluctuations

on the small scales measured by ground and balloon-based experiments.

Piacentini et al. 2005) We do not include results from a number of experiments that overlap
in ! range coverage with WMAP as these experiments have non-trivial cross-correlations

with WMAP that would have to be included in the analysis. We compare the angular power
spectrum from based on fitting the ΛCDM model to the WMAP data alone to current

experiments in Figure 5.

We do not use the small-scale polarization results for parameter determination as they do

not yet noticeably improve constraints. These polarization measurements, however, already
provide important tests on the basic assumptions of the model (e.g., adiabatic fluctuations

and standard recombination history).

(WMAP 3, Spergel et al.)
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RELEVANT OBSERVATIONS

κ =−0.1

κ =−0.3
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PHYSICALLY (LOCAL 
MODEL)...

Negatively skewed Positively skewed

fNL =±0.1

σ2 = 1

k2ζ = 4πGa2δρ.

+fNL=more clusters
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OBSERVABLES

CMB

Cluster number counts

Galaxy bispectrum

Analysis on the next slide from 
arXiv:0711.4126, 

M. LoVerde, A. Miller, L. Verde, S.S.
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SO HOW WELL CAN WE DO?

(Ωm = 0.24,h = 0.73,σ8 = 0.77,κ = 0)

Info. Fiducial Model σΩm σh σσ8 σfNL σκ

WMAP 0.0264 0.029 0.046 150 −
WMAP + dN/dz feq

NL = 38 κ = 0 0.0080 0.029 0.026 150 1.69
′′ feq

NL = 38 κ = −0.3 0.011 0.029 0.032 150 1.20
′′ feq

NL = −256 κ = 0 0.0076 0.029 0.022 150 0.17
′′ feq

NL = −256 κ = −0.3 0.0089 0.029 0.022 149 0.14
′′ feq

NL = 332 κ = 0 0.010 0.029 0.034 150 0.40
′′ feq

NL = 332 κ = −0.3 0.011 0.029 0.034 150 0.23
Planck 0.0084 0.011 0.015 40 −

Planck + dN/dz feq
NL = 38, κ = 0.0 0.0058 0.011 0.014 40 1.00

′′ feq
NL = 38 κ = −0.3 0.0070 0.011 0.015 40 0.47

′′ feq
NL = −256 κ = 0 0.0053 0.011 0.013 40 0.09

′′ feq
NL = −256 κ = −0.3 0.0061 0.011 0.013 40 0.09

′′ feq
NL = 332 κ = 0 0.0066 0.011 0.015 40 0.19

′′ feq
NL = 332 κ = −0.3 0.0068 0.011 0.015 40 0.11

Table 1: The forecasted 1-σ errors on Ωm, σ8, feq
NL and κ for three equilateral type non-Gaussian

fiducial models with Ωm = 0.24, h = 0.73 and σ8 = 0.77. The errors are quoted for a cluster survey
with one mass bin M > Mlim = 1.75×1014h−1Msun and full sky coverage. To determine the errors
for a survey with partial sky coverage multiply the quoted error by 1/

√
fsky. We use redshift bins

of width ∆z = 0.2, for the models with κ = 0.0 we use 7 bins up to z̄max = 1.3. For those with
κ = −0.3 we use 5 bins up to z̄max = 0.9. For each value of κ, the values of zmax are chosen to
stay within the regime where the mass function is valid for all three fNL values (see Appendix B).
Note that ACT, SPT, and Planck will provide different constraints as both the sky coverage and
the depth of the survey will vary - ACT will yield the smallest area, deepest survey of the three,
and Planck will produce a full-sky survey with a higher mass limit than the other two.

Another point is that the constraints on the cosmological parameters Ωm, h, and σ8

depend on the magnitude of feq
NL. This not too surprising because the constraints for each

parameter pa depend on the magnitude of dei/dpa and on ei for each fiducial model. The
derivative of mass function (Eq. 4.19) in the presence of non-Gaussian initial conditions
will have a sum of terms, some of which are dependent upon S3. Since S3 ∝ feq

NL(kCMB),
changing feq

NL changes the sign and relative magnitude of these terms and therefore the
magnitude of dei/dpa. On the other hand feq

NL(kCMB) affects the number of clusters ei and
the error on pa is inversely proportional to

√
ei.

A summary of our findings can be seen in Figure 6. Our Fisher analysis shows that
if feq

NL(kCMB) large (just within the current WMAP bounds) cluster number counts will
allow one to constrain the running of the non-Gaussianity κ. If the running of the non-
Gaussianity is also large (κ = −0.3) then it is likely to be detected by a complete cluster
survey. On the other hand, if feq

NL(kCMB) ≈ 38 and κ is large cluster number counts
may provide evidence of the running of non-Gaussianity but are unlikely to yield strong
constraints. Constraints may be improved by grouping the clusters into multiple mass bins,
retaining some of the information about how dn/dM depends differently on each parameter.

– 24 –



Carnegie Mellon, 
Jan. 16, 2008

SO HOW WELL CAN WE DO?

(Ωm = 0.24,h = 0.73,σ8 = 0.77,κ = 0)

Info. Fiducial Model σΩm σh σσ8 σfNL σκ

WMAP 0.0264 0.029 0.046 150 −
WMAP + dN/dz feq

NL = 38 κ = 0 0.0080 0.029 0.026 150 1.69
′′ feq

NL = 38 κ = −0.3 0.011 0.029 0.032 150 1.20
′′ feq

NL = −256 κ = 0 0.0076 0.029 0.022 150 0.17
′′ feq

NL = −256 κ = −0.3 0.0089 0.029 0.022 149 0.14
′′ feq

NL = 332 κ = 0 0.010 0.029 0.034 150 0.40
′′ feq

NL = 332 κ = −0.3 0.011 0.029 0.034 150 0.23
Planck 0.0084 0.011 0.015 40 −

Planck + dN/dz feq
NL = 38, κ = 0.0 0.0058 0.011 0.014 40 1.00

′′ feq
NL = 38 κ = −0.3 0.0070 0.011 0.015 40 0.47

′′ feq
NL = −256 κ = 0 0.0053 0.011 0.013 40 0.09

′′ feq
NL = −256 κ = −0.3 0.0061 0.011 0.013 40 0.09

′′ feq
NL = 332 κ = 0 0.0066 0.011 0.015 40 0.19

′′ feq
NL = 332 κ = −0.3 0.0068 0.011 0.015 40 0.11

Table 1: The forecasted 1-σ errors on Ωm, σ8, feq
NL and κ for three equilateral type non-Gaussian

fiducial models with Ωm = 0.24, h = 0.73 and σ8 = 0.77. The errors are quoted for a cluster survey
with one mass bin M > Mlim = 1.75×1014h−1Msun and full sky coverage. To determine the errors
for a survey with partial sky coverage multiply the quoted error by 1/

√
fsky. We use redshift bins

of width ∆z = 0.2, for the models with κ = 0.0 we use 7 bins up to z̄max = 1.3. For those with
κ = −0.3 we use 5 bins up to z̄max = 0.9. For each value of κ, the values of zmax are chosen to
stay within the regime where the mass function is valid for all three fNL values (see Appendix B).
Note that ACT, SPT, and Planck will provide different constraints as both the sky coverage and
the depth of the survey will vary - ACT will yield the smallest area, deepest survey of the three,
and Planck will produce a full-sky survey with a higher mass limit than the other two.

Another point is that the constraints on the cosmological parameters Ωm, h, and σ8

depend on the magnitude of feq
NL. This not too surprising because the constraints for each

parameter pa depend on the magnitude of dei/dpa and on ei for each fiducial model. The
derivative of mass function (Eq. 4.19) in the presence of non-Gaussian initial conditions
will have a sum of terms, some of which are dependent upon S3. Since S3 ∝ feq

NL(kCMB),
changing feq

NL changes the sign and relative magnitude of these terms and therefore the
magnitude of dei/dpa. On the other hand feq

NL(kCMB) affects the number of clusters ei and
the error on pa is inversely proportional to

√
ei.

A summary of our findings can be seen in Figure 6. Our Fisher analysis shows that
if feq

NL(kCMB) large (just within the current WMAP bounds) cluster number counts will
allow one to constrain the running of the non-Gaussianity κ. If the running of the non-
Gaussianity is also large (κ = −0.3) then it is likely to be detected by a complete cluster
survey. On the other hand, if feq

NL(kCMB) ≈ 38 and κ is large cluster number counts
may provide evidence of the running of non-Gaussianity but are unlikely to yield strong
constraints. Constraints may be improved by grouping the clusters into multiple mass bins,
retaining some of the information about how dn/dM depends differently on each parameter.

– 24 –



Carnegie Mellon, 
Jan. 16, 2008

ASPECTS NG MAY TEST

UV (NG increases on small scales) vs. IR (NG 
decreases on small scales)

Deformed conifold:  κ = 0

Features (bumps in the potential or the warp factor)

Deviations from Bunch-Davies? (Holman, Tolley)

 All scale-dependent
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MAPPING THE WARP FACTOR

ε,η,κ

φ/φedge

ε
η

κ
0.2 0.4 0.6 0.8 1

!0.3

!0.2

!0.1

0.1

0.2

κ, KS throat

Here κ is a slow-roll parameter; can consider larger 
|κ| if spectrum is computed numerically
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IN THE FUTURE...

Recent analysis finds a NG signal in CMB (Yadav, 
Wandelt, fNL~90)

No matter the eventual fate of that result, NG is such 
a powerful discriminator that it should continue to be 
probed at all possible scales



FIELD RANGE AND 
OBSERVABLES
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LYTH BOUND

Field range is related to tensor/scalar ratio:

Sub-planckian field range implies             (barely 
detectable) if r is constant

Can be larger if r changes rapidly (e.g., if sound speed 
decreases)

r < 0.01

1
Mp

dφ
dNe

=
√

r
8
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REMINDER: CHAOTIC 
INFLATION

Usually, quadratic potential requires trans-Planckian 
field range

H(φ) = hnφn ε =
2M2

p

γ

(
H ′

H

)2

< 1 , ⇒ φ
Mp

> n

√
2
γ

V (φ) =
m2φ2

2
ε < 1⇒ φ

Mp
>
√

2
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FUNDAMENTAL QUANTITIES 
AND OBSERVABLES

Field Range: canonical inflaton, 4D Planck mass:

Relating the modulus field to the canonical inflaton:

Volume and Planck mass:

φ
Mp

M2
p =

V w
6

κ2
10

=
2V w

6
(2π)7g2

sα′4

φ =
√

Sρ
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THROAT DETAILS

Background D3 
charge N

Cut-off scale ρ0

AdS5×X5

R4 =
4πgsNπ3α′2

v

v = Vol(X5)

R

r
0
, e

0
-4A

D3

ρ0
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THE D3 BRANE FIELD RANGE 
PROBLEM

The smallest possible compact volume is the throat 
volume:

Then, the field range is:

V w
6 ∼V throat

6 =
Z ρUV

0
dρ ρ5h(ρ)

Z
dΩX5

= 2π4gsN2ρ2
UV

(
∆φ
Mp

)

max
<

2√
N
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CONFLICT WITH 
OBSERVATION?

Non-Gaussianity and the tensor/scalar ratio:

COBE normalization:

Need small background charge, large orbifolding:

(Baumann, McAllister)

(
∆φ
Mp

)2

=
32
rγ2 N ! 38

N ! 108Vol(X5)

Vol(X5)∼ (π)3→ 10−7
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SUMMARY SO FAR...

DBI brane inflation suggests an alternative to 
requiring a flat potential; worthwhile to try to realize 
DBI inflation

This comes along with large, scale-dependent non-
Gaussianity and maybe observable gravitational waves

DBI with a D3 brane struggles(!) to match data 

Regardless of the viability of DBI, suggests interesting 
ways to distinguish inflation scenarios



II. THE WRAPPED BRANE 
INFLATON
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In the UV (away from the 
tip)

In the IR, S2 shrinks to 
zero size; S3 finite volume

warp factor approaches a 
constant:

THE WARPED DEFORMED 
CONIFOLD

h(r0) =
R4

r4
0

= e8πK/(3gsM)

X5 = T 1,1

Throat Geometry
Flux will have a backreaction on the 

geometry and create throat like 
region

F3

H3

M

K

5d base  X5

F5N

ρ

N = KM

Far from tip

h(ρ) =
R4

ρ4

R4 =
4πgsNπ3α′2

v
volume of the base
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WRAPPING A D5-BRANE

p D5

(M-p) F3

M F3

S2

S3D5’s

(Kobayashi, Mukohyama, Kinoshita; Becker, 
Leblond, S.S.)
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EXTENDING THE FIELD 
RANGE

Orbifolding S2 or S3:

Wrapping number p

Then the normalization is

Field range:
(

∆φ
Mp

)2

≤ 23π
3

p
a

( gs

Nv

)

S =
4πR2

3
p
a

T5

Z

S2
dΩ2→

1
a

Z

S2
dΩ2



III. MATCHING 
OBSERVATIONS
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THREE DIMENSIONLESS 
VARIABLES

Inflaton mass:

Field range: 

Normalization:

A ≡ H ′ =
m√
6Mp

B≡ φ
Mp

C ≡ R4S
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OBSERVATIONAL 
CONSTRAINTS

Power spectrum normalization:

Non-Gaussianity:

Tensor/Scalar ratio:

PS =
H4γ2

16π2M4
pH ′2 =

A4C
4π2 ∼ 2×10−9

γ ∼ 2M2
p f (φ)1/2H ′ =

2
√

CA
B2 < 30| f eq.

NL | < 256

r =
32M2

p

γ2φ2 =
8B2

CA2 < 0.3
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CONSTRAINTS ON 
FUNDAMENTAL PARAMETERS

0.0 0.2 0.4 0.6 0.8 1.0 1.2

10

20

30

40

50

r

γ

gs = 1/10
p∼ a

N
v

> 105g−1/3
s

(
a
p

)2/3

Nv < 6×103
(p

a

)2
gs

Example point: N~ 104, v=1/40; γ=25, r=0.29
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LYTH BOUND REVISITED

Observationally, Lidsey and Huston find

For a D3, the result was

Assuming that r is constant on the scale of roughly 1 
e-fold, the Lyth bound with a wrapped D5 gives

r<0.04

r<10-7

r>0.002
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CLUES FROM THE D3 CASE?

Lots of caveats: 

Haven’t computed number of e-folds

Haven’t considered realistic throat geometry

Monte-Carlo for D3 brane case, without imposing 
volume constraint (there are other ways to extend 
the field range) (hep-th/0702107, R. Bean, S.S., H. Tye, J. Xu)





IV. CONSISTENCY ISSUES
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SOME POINTS OF CONCERN

What is the potential really?

Back-reaction of the brane on the geometry?

Is this a good “low” energy description?
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SOME POSSIBLE POTENTIALS

Chern-Simons term:

Other power laws?

n=2 inflates for smaller field range

n>3 require trans-planckian field range

H(φ) = hnφn

= µ52π
Z

d4x
(

3M
4h

+
1

gsh
(3gsM ln(φ/φ0)+2πq)

)

SCS = µ5

Z
P[C6 +C4(B2 +2πF)]Λ
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SIMPLISTIC BACKREACTION

Examining the perturbation to 
the radial warp factor due to 
the brane:

With bounds from data, this 
gives:

γ!

√
Nv
gs

a
p
! 103/2

pγ
a
!

√
Nv
gs
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SIMPLISTIC BACKREACTION

Examining the perturbation to 
the radial warp factor due to 
the brane:

With bounds from data, this 
gives:

γ!

√
Nv
gs

a
p
! 103/2

pγ
a
!

√
Nv
gs

And for D3:

γT3 < NT3

⇒ γ" 36
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KK MODES

We would like to ignore all fields except the inflaton:

KK modes at the bottom of the throat have warped 
masses

Number of e-folds?

h−1/4
IR > A

√
SR2 = A

√
C

1
R

φIR

φUV
> Hmax = Aφmax

Ne = A
√

C log(h1/4
IR )

mw
KK > H
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CONCLUSIONS

Fundamental moduli space translates to constraints 
on canonical inflaton field range (matches 
expectations from EFT)

For brane inflation, the relationship depends on the 
dimensionality

DBI with a wrapped brane can match observational 
data in the most optimistic case, but:

Many concerns other than field range
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SOME FINAL OPTIMISM...

DBI inflation has suggested an alternative to standard 
slow-roll with observable features

Non-Gaussianity is especially useful and leads to new 
ideas for observationally distinguishing models

DBI emphasizes importance of moduli space

Inflation is a useful context to investigate warped 
supersymmetry breaking
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GENERAL SOUND SPEED

〈ζ(!k1)ζ(!k2)ζ(!k3)〉 = (2π)7δ3(!k1 +!k2 +!k3)
P ζ(K)2

k3
1k3

2k3
3

(Aλ +Ac +Ao +Aε +Aη +As)

K = k1 + k2 + k3

−256 < f eq
NL < 332

Current CMB bound:
(Creminelli et al.)

(Chen, Huang, Kachru, Shiu)

f e f f
NL (k1 = k2 = k3)
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~ 0 for DBI lower order

GENERAL SOUND SPEED
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~ 0 for DBI lower order

GENERAL SOUND SPEED

Ac(k1,k2,k3) =
(

1
c2

s
−1

)(
− 1

K ∑
i> j

k2
i k2

j +
1

2K2 ∑
i "= j

k2
i k3

j +
1
8 ∑

i
k3

i

)

〈ζ(!k1)ζ(!k2)ζ(!k3)〉 = (2π)7δ3(!k1 +!k2 +!k3)
P ζ(K)2

k3
1k3

2k3
3

(Aλ +Ac +Ao +Aε +Aη +As)

K = k1 + k2 + k3

−256 < f eq
NL < 332

Current CMB bound:
(Creminelli et al.)

(Chen, Huang, Kachru, Shiu)

f e f f
NL (k1 = k2 = k3)
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TWO COMPARISONS

(Alocal−Ac)/Ac

0.05
0.1 0.5

2.010.0

(Aequil−Ac)/Ac

0.010.020.1
0.25

0.05


