Beam Test Results and ORCA validation for CMS EMU CSC front-end electronics

N. Terentiev

Carnegie Mellon University CMS EMU Meeting, CERN June 18, 2005

- Motivation.
- CSC cathode strip pulse shape fit.
- Comparison with ORCA simulation.
- Conclusion.

• Why to validate ORCA CSC simulation:

- importance of realistic simulation of CSC input signals and electronics response (the coordinate and time resolution, L1 trigger primitives, pile-up, neutron background);
- ORCA simulates input and output CSC signals in great details based on the beam test data and available design parameters;
- no changes in relevant part of ORCA code since year 2000 (see latest status in CMS Note 2001/013 by R. Wilkinson and T. Cox);
- old (prototype) front-end electronics parameters are still in use in ORCA simulation;
- plenty of data available from recent 25 ns structured beam tests of CSC chambers with final set of front - end electronics;
- validation of ORCA simulation is a part of Physics TDR, Vol. 1.

- Latest developments :
 - track fitting, comparator and cross-talk results from beam test data (Y. Zheng, UCLA, Feb 2005 EMU meeting);
 - pulser cross-talk measurements in SX5, S. Durkin, J. Gilmore, F. Geurts, April 2005,

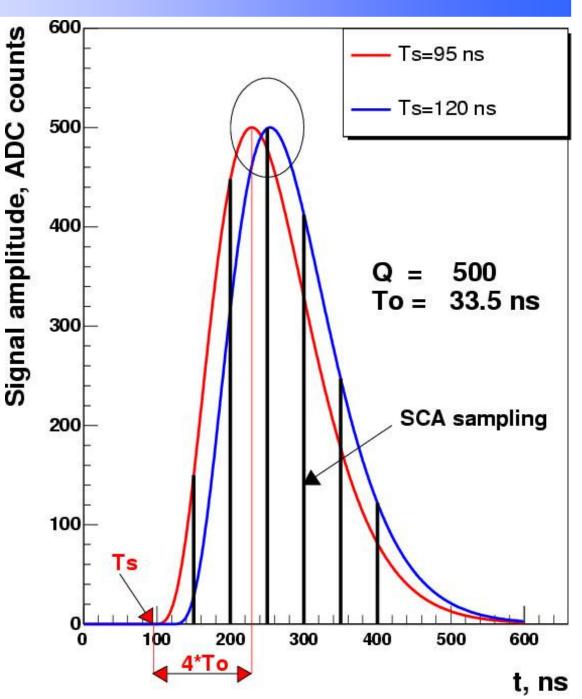
http://www.physics.ohio-state.edu/~durkin/file transfer/crosstalkdoc.pdf

- new code matching final cathode amplifier design and pulser cross-talk data, S. Durkin, OSU, May 2005, http://www.physics.ohio-state.edu/~durkin/software/buckeye_utils/Buckeye.htm;
- S. Durkin's code creating CSC track segments with use of Digis from 2003 and 2004 test beam data plus Y. Zheng's cross-talk and correlation code were committed by J. Mumford to CVS repository (EmuDAQ/AnalysisUtilities) and in use now in slice test at SX5;
- input and output signal simulation is now to be moved from ORCA to OSCAR package.

- How to compare cathode amplifier output signal in beam test data with ORCA simulation:
 - amplitude of the output signal is sampled in a Switch Capacitor Array (SCA) in 8 time bins each 50 ns long;
 - the 1-st SCA time bin defined as (L1 Accept) * LCT coincidence, details in note by A. Korytov,

http://www.phys.ufl.edu/cms/emu/dqm/data formats/CFEB data format notes.pdf;

- the phase of signal (time offset) in the beam test data is different in different CSC's (different DMB/TMB settings);
- ORCA has its own phase too (max. SCA is always in the 5-th time bin);
- due to 25 ns beam structure and 50 ns SCA sampling period, can have two positions of signal in time (muon comes with odd/even L1 Accept);
- therefore fit the SCA pulse shape in beam test data and ORCA simulation data and compare relevant fit parameters;
- for direct data comparison with simulation choose the signals with the same phase.


CSC cathode strip pulse shape fit (cont'd)

- Fitting function for signal from one cathode strip:
 - semi-Gaussian

S(t)~Q*T**4* exp(-T),

Q = charge, ADC counts, T = (t-Ts)/T0, 4*T0 = peaking time, ns Ts = time offset, ns;

- good approximation for the top of the signal;
- note example with two pulses 25 ns apart and having max. SCA at one and the same SCA time bin.

- Including strip to strip cross-talk:
 - based on recent external pulser data taken at SX5 (S. Durkin, J. Gilmore, F. Geurts, April 2005), http://www.physics.ohiostate.edu/~durkin/file_transfer/crosstalkdoc.pdf;
 - cross-talk from pulser data, convoluted by S. Durkin with ion drift time 1/(+2.1) and a 50 ns square wave (drift electron arrival);
 - hint from S. Durkin to use his function buckeye_pulse_full(†,P0,P1,Z1) approximating the cross-talk to ~1% near the peak;
 - cross-talk from the strip with charge Q to the side strip:

cross-talk = Q * Ct * Fc,

Fc = buckeye_pulse_full(t,P0,P1,Z1)/N,

N = fixed normalization factor, depending on PO,P1,Z1,

C[†] = cross-talk coefficient (to be fitted with the beam test data and ORCA simulation);

• separate fit of the cross-talk pulser data with free PO,P1,Z1 and Ct (Q =1) yields $C^{+} \sim 0.1$, in agreement with beam test data.

Events selection:

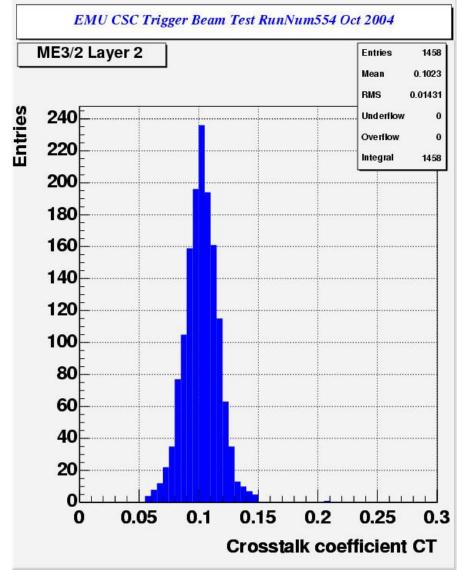
- single hit in anode and cathode layer;
- pedestals as SCA in the first time bin (RMS=2.7);
- fit SCA using 3 time bins each from 3 cathode strips,
 9 in total, with max. SCA time bin in the middle:

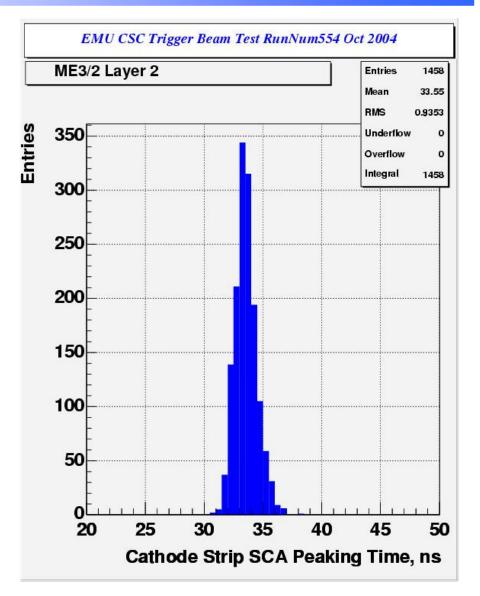
QI(-50),QI(0),QI(+50) - SCA for left strip,

Qm(-50),Qm(0),Qm(+50) - SCA for middle strip,

Qr(-50), Qr(0), Qr(+50) - SCA for right strip,

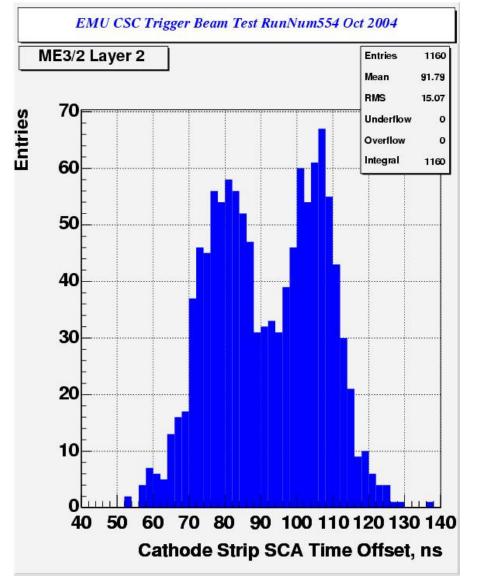
where the largest SCA corresponds to max. charge deposition Qm(0) and the time bin is 50 ns long.

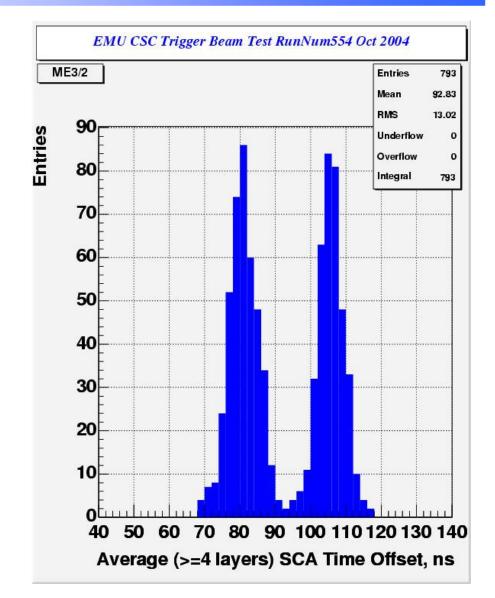

- Fitting function for 9 SCA time bins in 3 strips: SCA_left(t) = Q_left *S+Ct*Fc*(0 + Q_middle) SCA_middle(t)= Q_middle*S+Ct*Fc*(Q_left + Q_right) SCA_right(t) = Q_right *S+Ct*Fc*(Q_middle+ 0) where S - semi-Gaussian, Fc - cross-talk shape. Six fitted parameters (NDF=3): Q_left, Q_middle, Q_right, T0, Ts and Ct.
 - for good measurement of the cross-talk coefficient C⁺, select hits with large signal and close to the center of the middle strip:


Q_middle > 200

Q_middle/(Q_left+Q_middle+Q_right) > 0.7

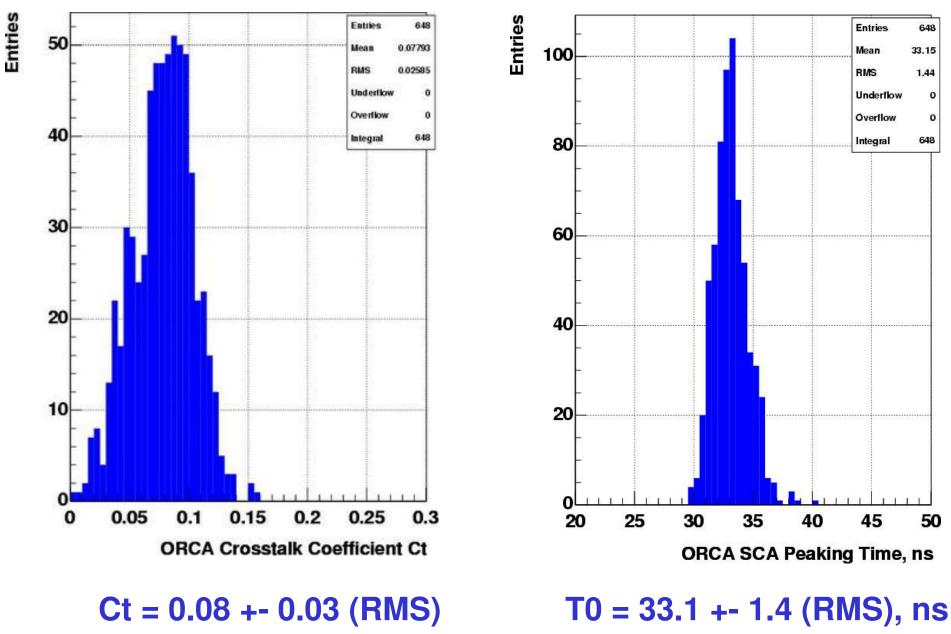
CSC cathode strip pulse shape fit (beam test)



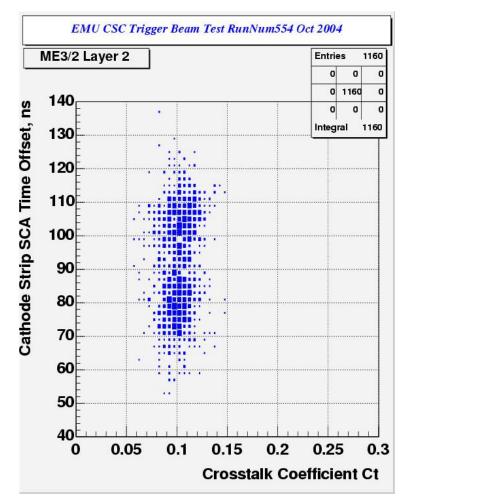


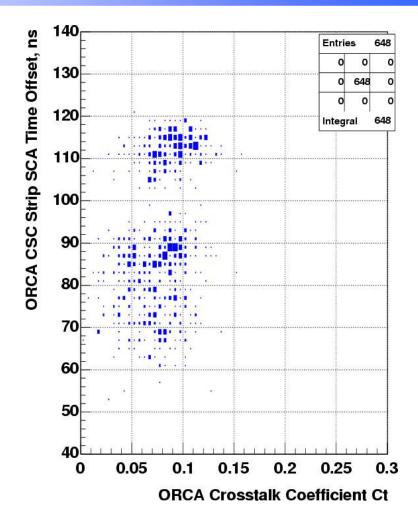
Ct = 0.102 + 0.014 (RMS) T0 = 33.5 + 0.9 (RMS), ns

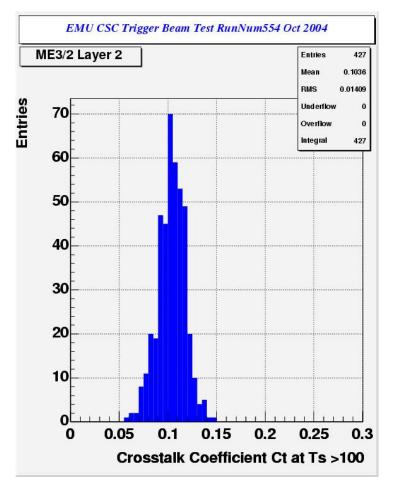
CSC cathode strip pulse shape fit (beam test)

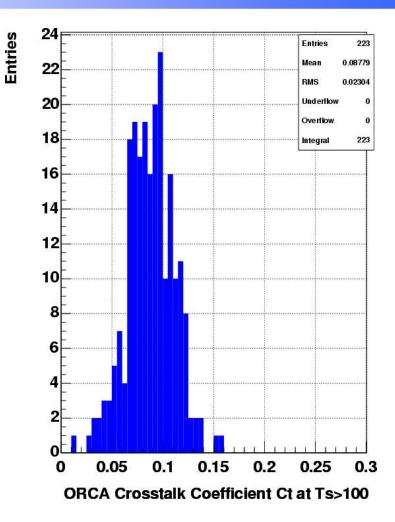


Cathode strip SCA time offset Ts for one CSC layer and averaged over >= 4 CSC layers. The peaks are 25 ns apart.




- ORCA (for EMU CSC simulated digitization in full CMS detector, not yet available for beam test geometry):
 - the single muon particle gun sample, Pt=100 GeV;
 - used OSCAR versions 3_2_2 and ORCA versions 8_1_3 (newer versions have the same code for the CSC raw data).
- Events selection in ORCA simulation:
 - cut 1.3 < EtaGen < 1.6 (~ as in the beam test);
 - all ME234/2 CSC (Station 1 with ME1/1 CSC is excluded);
 - Q_middle > 150, Q_middle/(Q_left+Q_middle+Q_right) > 0.7
 to look at strong signal from track close to strip center.
- Fit by the same function.





- Beam test almost no correlation between time offset Ts and crosstalk coefficient Ct.
- Select Ct at Ts>100 in beam test data and simulation for comparison.

- Beam test: Ct = 0.104 +- 0.014 (RMS).
- ORCA simulation: Ct = 0.088 +- 0.023 (RMS).

	SCA Pedestal	Peaking timeT0	Crosstalk Ct
ORCA	4.0(RMS)	33.1 +- 1.4(RMS)	0.088+-0.023(RMS)
Beam test	2.7(RMS)	33.5 +- 0.9(RMS)	0.104+-0.014(RMS)

Accuracy of the Ct parameter can be improved if use SCA data in the fit from 3 strips with 12 time bins instead of 9 (add the time bin with next to max. of the cross-talk signal to include the cross-talk peak):

Time	-200	-150	-100	-50	0	+50	+100	+150
Left	0	0	41	110	88	41	18	5
Middle	0	3	112	429	512	370	214	122
Right	0	1	33	85	57	16	6	3

- The beam test data and ORCA simulation for the CSC cathode strip output pulses were compared using a fitted function and cross-talk from pulser data.
- Data and simulation seem to agree for the peaking time T0 and cross-talk coefficient Ct. To be confirmed with larger statistics.
- For future use the cross-talk coefficient should be found from pulser data and fixed.
- The ORCA code should be updated to include parameters from the final design of front-end electronics.
- Thanks to S. Durkin and T. Ferguson for helpful discussions.