Test beam data analysis
&
validation of OSCAR/ORCA

Tim Cox, UC Davis
Nikolai Terentiev*, CMU

CMS Physics Week
Fermilab
Apr 12 - 15, 2005
Outline

• Status of work on section in Physics TDR, Vol 1 (T. Cox, UC Davis)

• Endcap Muon Cathode Strip Chambers (CSC): comparison of test beam raw data and ORCA simulation/digitization
 • The time profile of signal for the cathode strips.
 • The ratio of charges for two adjacent cathode strips.

• Plans
What this is about

“Test beam data analysis and validation of OSCAR simulation”, one of the Muon PTDR tasks listed on http://cmsdoc.cern.ch/cms/Physics/muon/www/management/tasks_page.html

- Good: more people actually working on this than mentioned there.
- Details in https://uimon.cern.ch/twiki/bin/view/CMS/Muon
- Bad: work is really just starting so few real results.
- Bad: we haven’t got a list of ‘target’ plots yet. Please suggest such plots - evidence and support for reliability of simulation and reconstruction. (I presume we’d even like to know the detectors really work to measure what we expect they will.)
Task ‘Test beam data analysis and validation of OSCAR simulation’

<table>
<thead>
<tr>
<th>Work underway?</th>
<th>DTs</th>
<th>CSCs</th>
<th>RPCs</th>
<th>OSCAR</th>
<th>Neutron bkgd</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no?</td>
<td>–</td>
<td>yes</td>
</tr>
</tbody>
</table>

People known to be contributing
- Cerminara
- Marcellini
- Hoepfner (Amapane)
- Belotelov
- Breedon
- Chertok
- Cox
- Meshcheryakov
- Moissenz
- Mumford
- Terentiev

Comments
- Web page: https://uimon.cern.ch/twiki/bin/view/CMS/DTTestBeam
- Much work is getting going... need changes in ORCA for test beam data (& geom)
- Is anybody there?
- OSCAR general support, & knowledge of validation
- Phat has restarted work under Pedro’s guidance.
• Conclusions
 • Good: work underway for DTs and CSCs.
 • Bad: no RPC-related program of work?
 • Suggestions for *what plots* the task needs to supply for the PTDR, from physics, hardware, or software viewpoint, gratefully accepted.
CSC test beam data vs ORCA

- Sep-Oct ’04 EMU CSC Beam Test
 - Asynchronous (1.5 week).
 - 25 ns structured beam (1 week).
- Setup features
 - 5 CSCs, 3 RPCs, HCAL.
 - 4 peripheral crates.
 - New DDU/DCC.
 - TrackFinder crate (SP1+SP2).
 - Trigger: SC (Scint. Counters), TF (Track Finder).
- Details and some results at EMU Oct 2004 meeting by F. Geurts, D. Acosta, A. Korytov, M. Von der Mey, J. Hauser, S. Durkin
CSC test beam data vs ORCA

- CSC – Cathode Strip Chamber, six layers, two coordinates in each layer
 - Anode wires in azimuthal, cathode strips in radial directions.
 - Provides ~ 99% efficient 25 ns bunch crossing identification (anode front end + ALCT).
 - Precise measurement of the azimuthal coordinate (~ 150 μm) by cathode strips.
 - Trigger primitives for Level-1 trigger system.
CSC test beam data vs ORCA

- Test beam data (see details in www-hep.phys.cmu.edu/cms/Beam_Test_Sep_2004/tb.html)
 - CERN H2 150 GeV Muons.
 - 25 ns structured beam.
 - Require single muon track in analysis (one anode wire hit, one cathode comparator hit per CSC layer).

- ORCA (for EMU CSC simulated digitization in full CMS detector, not yet available for beam test geometry)
 - The single muon particle gun sample, Pt=100 GeV.
 - Flat in Phi over all Phi.
 - Flat in Eta from -2.5 to 2.5.
 - Used versions are OSCAR_3_2_2 and ORCA_8_1_3 (newer versions have the same code for the CSC raw data).
CSC test beam data vs ORCA

- **Test beam** - the time profile of signal for the cathode strip with max. amplitude
 - Data from CSC ME3/2.
 - Normalize to area in each event, average thru all events.
 - Time bin 50 ns.
CSC test beam data vs ORCA

- ORCA - the time profile of signal for the cathode strip with max. amplitude
 - All CSCs (Station 1 excluded).
 - Max. amplitude always in time bin 4.
 - Normalize to area in each event, average thru all events.
 - Time bin 50 ns.
CSC test beam data vs ORCA

- ORCA vs data for the time profile of the cathode strip signal
 - Reasonable agreement.
CSC test beam data vs ORCA

- Test beam - the ratio of charges \(Q \) (Log10) for two adjacent strips (\(N_{\text{max}} \) is a strip with \(Q_{\text{max}} \))
 - Data from CSC ME3/2.
 - At 0 – track between strips \(N_{\text{max}}-1 \) and \(N_{\text{max}} \).
 - At \(-2\) – track between strips \(N_{\text{max}} \) and \(N_{\text{max}}+1 \).
 - No correction for beam profile within two strips.
CSC test beam data vs ORCA

- ORCA - the ratio of charges Q (Log10) for two adjacent strips (Nmax is a strip with Qmax)
 - Cut $1.3 < \text{EtaGen} < 1.6$ (~ as in the beam test).
 - All ME234/2 CSCs (Station 1 is excluded).
 - Preliminary, need more Monte Carlo statistics or switch to using actual beam test geometry in ORCA.
• **ORCA vs data** (preliminary)
 - Occupancies from previous figures are normalized to the distribution areas.
 - Reasonable agreement in case of the track between strips.
 - ORCA needs more study in other cases.
 - To adjust ORCA for the beam test conditions in the final comparison.
Plans

• Continue ORCA with test beam data comparison
 • Cathode strip pedestal RMS, amplitudes, noise, crosstalk.
 • Cathode strip comparator thresholds and timing.
 • Anode front end thresholds, timing.
 • Tracking in the beam test, cathode strip coordinate resolution.

• The beam test option in ORCA is greatly needed
 • Work is in progress (R. Wilkinson, A. Tumanov, T. Cox, J. Mumford,…).

• Picture/accompanying text selection for the Physics TDR, Vol 1