

N.Bondar CMU. 12/18/02

ME 234/2 HV noise investigation

- Fact 1. A few times FAST site Test 11 was failed (AFEB counting noise). AFEB threshold set to 20 fC, HV off, ALCT at self-trigger mode, noise calculated with a free running scaler.
- Fact 2. Planes 6, 4, 2 are more sensitive to this noise than planes 1, 3, 5.
- Fact 3. This behavior is not stable and depends on numerous factors (system grounding, noise source location, HV supply, HV cabling, etc...
- Fact 4. If HV cable is disconnected, the situation is absolutely quiet.

Conclusion:

- HV supply with HV cable is a noise source.
- Noise transfer function from HV line to anode wires for planes 1, 3, 5 is less than for planes 2, 4, 6.

To eliminate this effect there are two ways:

- Minimize noise source
- Minimize noise transfer function

HV supply noise sources

- HV ripple noise
- HV common mode noise
- HV supply as a noise antenna
- specified as 50 mV max.
- should be specified
- general environment dependable

Chamber HV connection

Jumper effect

1. ALCT trigger rate

2. AFEB test channel

Time, ns

Placing ground jumpers on the ME23/2 chamber decreases the effect of HV parasitic pulses to the anode amplifiers by a factor of 4 (at least).

5

Jumper effect

FAST site Test 15. CFEB noise Conditions: 2.5 V parasitic pulses applied at one HV segment

No jumpers installed. Strips 1 - 3 at all planes have an extra noise. Plane 6 has a noise of 6 ADC counts.

Nine jumpers installed at the planes 2, 4, 6. Noise at that planes goes down to the normal level.

1, 2, 3, 4, 5 – proposed positions for the jumpers

First approximation of the jumpers location

Picture is not to scale 9

Chamber preparation for jumper installation

The chamber gap cleaning clip

Abrasive sponge sticks out of the clip for ~0.25" to prevent any damage of the chamber sealing

Cleaning procedure

Tin the chamber panel edges before jumper installation

Jumper preparation

Jumper bending

Jumper in place

Solder connection

Conclusion

Proposed jumpers for HV line is a simple and reliable solution to minimize anode wire sensitivity to HV noise.

Placing ground jumpers on the ME23/2 chamber decreases the effect of HV parasitic pulses to the anode amplifiers by a factor of 4.

This solution will minimize effort and save time hunting for noise sources on the iron disk.