Footprints of New Physics in the B System

Yuval Grossman

Outline

- New Physics and the flavor problem
 - The hierarchy problem
 - The new physics flavor problem
 - Types of new physics models
- Searching new physics
 - CP asymmetries in $b \to c\bar{c}s$ vs $b \to s\bar{s}s$
 - $B \to K\pi$
 - Polarization in $B \rightarrow VV$

New Physics

Reasons Not to Believe the SM

- 1. The hierarchy problem
- 2. The strong CP problem
- 3. Baryogenesis
- 4. Gauge coupling unification
- 5. Neutrino masses
- 6. Gravity
- Very likely, there is new physics
- The hierarchy problem suggests

```
\Lambda \sim 4\pi m_W \sim 1 \text{ TeV}
```

We can directly probe new physics at such a scale

The new physics flavor problem

The SM flavor puzzle: why the masses and mixing angles exhibit hierarchy. This is not what we refer to here

The SM flavor structure is special

- Universality of the charged current interaction
- FCNCs are highly suppressed

Any NP model must reproduce these successful SM features

The new physics flavor scale

• *K* physics: ϵ_K

$$\frac{s\overline{d}s\overline{d}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^4 \text{ TeV}$$

• *D* physics: $D - \overline{D}$ mixing

$$\frac{c\overline{u}c\overline{u}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^3 \text{ TeV}$$

• B physics: $B - \overline{B}$ mixing and CPV

$$\frac{b\overline{d}b\overline{d}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^3 \text{ TeV}$$

There is no exact symmetry that can forbid such operators

Flavor and the hierarchy problem

There is tension:

- The hierarchy problem $\Rightarrow \Lambda \sim 1 \text{ TeV}$
- Flavor bounds $\Rightarrow \Lambda > 10^4 \text{ TeV}$

Any TeV scale NP has to deal with the flavor bounds

Such NP cannot have a generic flavor structure

Flavor is mainly an input to model building, not an output

Dealing with flavor

Any viable NP model has to deal with this tension

- The NP is flavor blind, MFV (GMSB; UED)
 - Small effects in flavor physics
- Flavor suppression mainly of first two generations (Heavy q̃; RS)
 - Large effects in the B and B_s systems
- Generic suppression (SUSY alignment; split fermions)
 - Can be tested with flavor physics
- Generic models
 - Huge effects in flavor physics: already ruled out

Probing new physics with mesons

Bottom line

- Any new physics model has to deal with flavor
- In some cases we expect large effects in meson physics
- It is plausible that we can see such effects in rare processes
 - Meson mixing
 - Loop mediated decays
 - CKM suppressed amplitudes

Current hints for new physics

New Physics

At present there is no significant deviation from the SM predictions in the flavor sector

New Physics

At present there is no significant deviation from the SM predictions in the flavor sector

Yet, there are a few hints:

- $a_{\rm CP}(B \to \psi K_S) \text{ vs } a_{\rm CP}(b \to sq\bar{q})$
- Polarization in $B \rightarrow VV$ decays
- and more...

CP asymmetries in $b \rightarrow s\bar{q}q$ modes

CP asymmetries in $b \rightarrow s\bar{s}s$ modes

- To good approximation both the tree $b \rightarrow c\bar{c}s$ and penguin $b \rightarrow q\bar{q}$ decay amplitudes are real
- To first approximation the SM predicts $a_{CP}(B \to \psi K_S) = a_{CP}(B \to \phi K_S) = a_{CP}(B \to \pi K_S) = a_{CP}(B \to \eta' K_S) = -a_{CP}(B \to K^+ K^- K_S) = \sin 2\beta$
- The theoretical uncertainties are between O(1%) to O(20%)

The problem with $b \rightarrow sq\bar{q}$ decays

$$A = \underbrace{V_{cb}V_{cs}^*}_{V_{cs}}P + \underbrace{V_{ub}V_{us}^*}_{V_{ub}}T$$

dominant contribution suppressed by λ^2

$$\xi_f \equiv \frac{V_{ub}^* V_{us}}{V_{cb}^* V_{cs}} \frac{T}{P}, \qquad \left| \frac{V_{ub}^* V_{us}}{V_{cb}^* V_{cs}} \right| = \mathcal{O}(\lambda^2), \qquad \delta_f = \arg \frac{a_f^u}{a_f^c}$$

•
$$S_f - \sin 2\beta \approx 2\cos 2\beta \sin \gamma \, \cos \delta_f |\xi_f|$$

$$C_f \approx -2\sin\gamma\,\sin\delta_f\,|\xi_f|$$

How large are the subleading effects in the SM?

SU(3) relations

YG, Isidori, Worah; YG, Ligeti, Nir, Quinn; Gronau, Rosner

• For $b \to q\bar{q}s$ transitions

$$A_f = V_{cb}^* V_{cs} P_f + V_{ub}^* V_{us} T_f = V_{cb}^* V_{cs} P_f (1 + \xi_f)$$

• For $b \rightarrow q\bar{q}d$ transitions

$$A_{f'} = V_{cb}^* V_{cd} P_f' + V_{ub}^* V_{ud} T_f' = V_{ub}^* V_{ud} T_f' (1 + \lambda^2 \xi_{f'}^{-1})$$

SU(3) gives relations among T_f and T'_f

$$T = \sum_{f'} x_{f'} T'_f \quad \Rightarrow \quad \xi_f \lesssim \lambda \sum_{f'} |x_{f'}| \sqrt{\frac{\mathcal{B}(f')}{\mathcal{B}(f)}}$$

Example: $B \to \pi^0 K_S$

SU(3) relation

$$A(\pi^0 K^0) = A(\pi^0 \pi^0) + A(K^+ K^-) / \sqrt{2}$$

Data: $\mathcal{B}(B^0 \to \pi^0 K^0) = (11.92 \pm 1.44) \times 10^{-6}$
 $\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.89 \pm 0.46) \times 10^{-6}$
 $\mathcal{B}(B^0 \to K^+ K^-) < 0.6 \times 10^{-6}$

We get

 $\xi \le 0.13, \quad |S_{\pi K} - \sin 2\beta| < 0.19, \quad |C_{\pi K}| < 0.26$

● We expect $\mathcal{B}(B^0 \to K^+K^-)$ to be very small. Neglecting it we get stronger bounds

 $B \to \pi^0 K_S$

• Neglecting $B^0 \to K^+ K^-$

Comments on SU(3)

- Similar analysis for other modes
- SU(3) relations are most useful for simple relations
- SU(3) and U spin are the same
- Since we use SU(3) there are large, O(30%), corrections. They can be larger or smaller in specific cases
- Bottom line: Large deviations from the SU(3) bounds are signals for new physics

$$b \rightarrow s \overline{q} q$$
 data

$$S_{\psi K_S} = +0.73 \pm 0.05$$

$$S_{\pi K_S} = +0.48^{+0.38}_{-0.47} \pm 0.11 \qquad S_{\eta' K_S} = +0.27 \pm 0.21$$
$$S_{\phi K_S} = -0.15 \pm 0.70 \qquad -S_{K^+ K^- K_S} = +0.49 \pm 0.44^{+0.33}_{-0.00}$$

- To first approximation, these asymmetries are equal in the SM
- For $S_{\phi K_S}$ the experimental situation is not clear

Explanation of $S_{\psi K_S} \neq S_{\phi K_S} \neq S_{\eta' K_S}$

Long list of authors

- Since $B \rightarrow \eta' K_S$ and $B \rightarrow \phi K_S$ are one loop in the SM we expect large new physics effects
- Due to different hadronic matrix elements we expect the shift from $\sin 2\beta$ to be different in the two modes
- $B \rightarrow \psi K_S$ is a CKM favored tree level decay in the SM ⇒ we expect small new physics effects

NP in $b \to s\bar{q}q$ generally gives $S_{\psi K_S} \neq S_{\phi K_S} \neq S_{\eta' K_S}$

Getting a shift only in $B \rightarrow \phi K_S$

While no indication, still we ask: Can we get

 $S_{\phi K_S} \neq S_{\psi K_S}$ with $S_{\pi K_S} = S_{\eta' K_S} = S_{\psi K_S}$

- $B \to \phi K_S$ is parity conserving while $B \to \eta' K_S$ is parity violating
- Parity conserving new physics in $b \to s$ penguins only affect $B \to \phi K_S$
- Generically, new physics models are not parity conserving
- Supersymmetric $SU(2)_L \times SU(2)_R \times Parity$ is an example of an approximate parity conserving new physics model

Kagan

Opposite chirality

NP models often include opposite chirality operators

$$Q_3 = (\bar{s}b)_{V-A} (\bar{q}q)_{V-A} \to \tilde{Q}_5 = (\bar{s}b)_{V+A} (\bar{q}q)_{V+A}$$

- Effective Hamiltonian: $\mathcal{H}_{eff} \propto \sum_i C_i Q_i + \tilde{C}_i \tilde{Q}_i$
- Under Parity, $Qi \leftrightarrow \tilde{Q}_i \Rightarrow$ final state, f, with parity P_f

$$\langle f|Q_i|B\rangle = (-1)^{P_B} (-1)^{P_f} \langle f|\tilde{Q}_i|B\rangle$$

$$\Rightarrow A_i(B \to f) \propto C_i - (-1)^{P_f} \tilde{C}_i$$

- In the SM $\tilde{C} = 0 \implies A_i^{\rm NP}(B \to f) \propto C_i^{\rm NP} (-1)^{P_f} \tilde{C}_i^{\rm NP}$
- For *P*-invariant NP $A_i^{NP} = 0$ for all P_f even states

Examples

- **●** *P*-even: $\eta' K$, $K\pi$, Ka_1 , $K_1\pi$, $(\phi K^*)_{0,\parallel}$, $(K^*\rho)_{0,\parallel}$,...
- **●** *P*-odd: ϕK , $K^{*0}\pi$, f_0K , $(\phi K^*)_{\perp}$, $(\phi K_1)_{0,\parallel}$,...

P-invariant new physics affects only the *P*-odd final states

- $S(f) S(\psi K_S) \neq 0$
- Possible to get $C(f) \neq 0$
- The effect is in general different in each of the P-odd modes
- Hard to see the effect on rates. Too large theoretical uncertainties

Left right symmetric new physics

It is not easy to naturally get $C_i = \tilde{C}_i$

- The SM is maximally parity violating
- Any model without a parity symmetry needs fine tuning
- Parity at the high scale must be broken
- Need to arrange that symmetry breaking effects are large for the SM sector and small for the NP sector
- Example: SUSY LRS model
 - SM: $m(W_L) \ll m(W_R)$
 - NP: $m(\tilde{q}_L) \approx m(\tilde{q}_R)$. Parity breaking via RGE only

$B \to K\pi$

 $B \to K\pi$

Consider the four decays

$$B^{+} \to K^{0} \pi^{+} \qquad b \to d\bar{d}s$$

$$B^{+} \to K^{+} \pi^{0} \qquad b \to d\bar{d}s \quad \text{or} \quad b \to u\bar{u}s$$

$$B^{0} \to K^{+} \pi^{-} \qquad b \to u\bar{u}s$$

$$B^{0} \to K^{0} \pi^{0} \qquad b \to d\bar{d}s \quad \text{or} \quad b \to u\bar{u}s$$

- In the SM these modes can be used to measure γ
- There are many SM relations between these modes that can be used to look for new physics (Fleischer-Mannel, Neubert-Rosner, Lipkin sum rule)

The Lipkin sum rule

Lipkin; Gronau, Rosner

Using isospin only

$$R_{\rm L} = \frac{2\Gamma(B^+ \to K^+ \pi^0) + 2\Gamma(B^0 \to K^0 \pi^0)}{\Gamma(B^+ \to K^0 \pi^+) + \Gamma(B^0 \to K^+ \pi^-)}$$
$$= 1 + O\left(\frac{P_{EW} + T}{P}\right)^2$$

- Experimentally $R_{\rm L} = 1.24 \pm 0.10$
- Using $P_{EW}/P \sim T/P \sim 0.1$ we expect theoretically

$$R_L = 1 + O(10^{-2})$$

• The deviation of R_L from 1 is an $O(2\sigma)$ effect

Explanation of
$$R_L - 1 \gg 10^{-2}$$

- Experimentally $R_{\rm L} = 1.24 \pm 0.10$
- New "Trojan penguins", P_{NP} , which are isospin breaking $(\Delta I = 1)$ amplitudes, modify the Lipkin sum rule

$$R_{\rm L} = 1 + O\left(\frac{P_{NP}}{P}\right)^2$$

• Need a large effect, $P_{NP} \approx P/2$

Gronau and Rosner

- In many models there are strong bounds from $b \rightarrow s \ell^+ \ell^-$
- Leptophobic Z' is a working example

Kagan, Neubert, YG; Leroux, London

Polarization in $B \rightarrow VV$ decays

Polarization in $B \rightarrow VV$ decays

Consider B decays into light vectors

$$B \to \rho \rho \qquad B \to \phi K^* \qquad B \to \rho K^*$$

Due to the left handed nature of the weak interaction in the SM in the $m_B \rightarrow \infty$ limit we expect

•
$$\frac{R_T}{R_0} = O\left(\frac{1}{m_B^2}\right)$$

•
$$\frac{R_{\perp}}{R_{\parallel}} = 1 + O\left(\frac{1}{m_B}\right)$$

Y. Grossman Footprints of New Physics in the B System Beauty 2003 – p.30

Kagan

Polarization data

 $\begin{aligned} R_0(B \to \phi K^*) &= 0.54 \pm 0.10 \quad \text{(BaBar and Belle)} \\ R_\perp(B \to \phi K^*) &= 0.41 \pm 0.11 \quad \text{(Belle)} \\ R_0(B \to \rho K^*) &= 0.96 \pm 0.16 \quad \text{(BaBar)} \\ R_0(B \to \rho \rho) &= 0.96 \pm 0.06 \quad \text{(BaBar and Belle)} \end{aligned}$

 $R_0 + R_\perp + R_\parallel = 1 \quad \Rightarrow \quad R_\parallel (B \to \phi K^*) = 0.05 \pm 0.15$

• SM prediction: $R_T/R_0 \ll 1$

•
$$B \to \rho \rho, \ B \to K^* \rho : \ R_T / R_0 \ll 1$$

- $B \to \phi K^* : R_T / R_0 = O(1)$
- SM prediction: $R_{\perp}/R_{\parallel} \approx 1$

•
$$B \to \phi K^*$$
: $R_\perp/R_\parallel \gg 1$

Explaining the polarization data

- The SM predictions do not hold in $B \to \phi K^*$
- This is a penguin $b \rightarrow s\bar{s}s$ decay
- SM explanation: the $1/m_B$ correction may be large for penguins and small for tree amplitudes
- New physics explanation: right handed current operators can explain the polarization data
- Polarization measurements for other modes are important, e.g., the penguin mode $B \to K^{*0} \rho^+$

Conclusions

Conclusions

- It is likely that there is new physics at a TeV
- Such new physics can show up in B physics
- No signal yet, but there are intriguing results