B Tagging and Mixing at Tevatron (Focusing on Bs mixing prospect) Ting Miao (FNAL)

•Key issues for B mixing analyses
•Current flavor tagging and Bs yield results
•Prospect in the next few years

B mixing and CKM matrixes

- $\Delta m_s / \Delta m_d = (M_{Bs} / M_{B0}) \xi |V_{ts} / V_{td}|^2$
- Exploring one side of CKM triangle

Bs mixing

- B_s mixing is the top priority
 for B physics at Tevatron
- A challenging measurement due to the rapid oscillation
 Δms>14.4 ps⁻¹@ 90% CL (HFAG 03)
 - 4 oscillations per lifetime cycle
- Unique Tevatron opportunity

Combined limits of indirect measurements using amplitude methods from LEP, SLD & CDF Run I

Key issues for Bs mixing

- High statistics with good signal-to-background ratio
 - Efficient triggering and fine mass resolution
 - Trigger on high pT leptons and displaced tracks (SVT/STT)
- Efficient Initial B flavor identification
 - Only 20-40% chance for both B in the detector acceptance
 - e/μ coverage (SLT), tracking (JetQ/SST) and PID (Kaon)
- Excellent proper decay length
 - Momentum and vertex resolution
 - Utilize the fully reconstructed decays

CDF Silicon Detector

- •8 layers with improved 3D ability
- L00 improves impact parameter resolution by 30-50%
- •ISL extends tracking coverage for e/ μ systems to $|\eta|$ =2

CDF Silicon Vertex Trigger at Level-2

Trigger on displaced tracks from b

L1 track + Si hits = L2 SVT

•Excellent L2 impact parameter resolution

σ= 35μm ⊕ 33 μm (resol⊕ beam) = 48 μm

•2-track trigger for $Bs \rightarrow Ds \pi$ etc.

Tracks: $p_T > 2$ GeV, $d_0 > 120 \mu m$

•e/µ + displaced track trigger

pT (e/μ)>4 GeV with pT (track)>2 GeV, d_0 >120 μ m

First Run II paper!

Bs \rightarrow **Ds** π **reconstruction**

•700 event per fb⁻¹ of $Bs \rightarrow Ds\pi$ with $Ds \rightarrow \phi\pi$, $\phi \rightarrow K^+K^-$ •Br(Bs $\rightarrow Ds^-\pi^+)/Br(B^0 \rightarrow D^-\pi^+)=1.4\pm0.2(stat)\pm0.2(syst)\pm0.4$ (Br) $\pm 0.2(PR)$

Bs \rightarrow **Ds** π yield (CDF)

- Results so far are using early CDF data
- Detector coverage and SVT efficiency improved since
 - SVX-II coverage (now ~90%)
 - SVT hits requirement optimization $(4/4 \rightarrow 4/5)$
 - Better use of L2 trigger bandwidth (dynamic pre-scales)
- We are seeing a factor of 2 increase on Bs yield
- Current condition produces Bs at a rate 1600/fb⁻¹
- Not count additional Bs/Ds channels yet
 - Bs→Ds-π + π -π + / Ds →K*K, KsK

Proper time resolution (CDF)

• $\sigma_t = (\sigma_{Lxy}/\beta\gamma) \oplus (\sigma_{pT}/pT) \cdot t$

- Proper time t= Lxy / $\beta\gamma$, $\beta\gamma = m / pT$

- σ_{Lxy} dominates for fully reconstructed events
- $\sigma_{pT}/pT=15\%$ for semileptonic decay
- From Bs \rightarrow Ds π sample $\sigma_{Lxy} \approx 50 \mu m$ with run-averaged beam line and without using L00 hits

- σ_{lxy} ≈ 40 ⊕ 30µm (SVX ⊕ beam)

- $\sigma_t = 0.067 \text{ps} \text{ now for } Bs \rightarrow Ds \pi$
- $\sigma_t = 0.050 \text{ ps}$ achievable (L00+event-by-event beam line)

Initial B flavor tagging at CDF/D0

• Soft lepton tagging (SLT)

- Semileptonic decay from the 2nd B
- High purity and lepton can be part of a trigger

• Jet Charge Tagging (JetQ)

- Correlation of b-flavor and charge of a b-jet
- High efficiency but Low purity

• Opposite-side Kaon Tagging (OKT)

- $N(B^0/B+\rightarrow K^+)/N(B^0/B+\rightarrow K^-)\approx 5$ due to the b $\rightarrow c\rightarrow s$
- Need PID for tagging purity

Flavor tagging at CDF/D0

- Same Side Tagging (SST)
 - (π⁻ B+, π⁺ B⁰, K⁺ Bs) correlations from b fragmentation or from B** decays
 - No need for 2^{nd} B in the acceptance
 - High efficiency and reasonable purity
 - PID will enhance purity

• $\varepsilon D^2 =$ effective tagging efficiency

- $-\epsilon = N_{tag}/N_{total}$ (efficiency of finding a tagger)
- $D = (N_R-N_W)/N_{tag}$ (ability for a right decision)

Flavor tagging results from D0

SLT result from CDF

•Test on high statistics *l*+SVT events

Need to correct the Dilution (64%)
 from triggered lep+SVT pair due to
 mixing and charm/prompt background

SST result from CDF

SST on $B+\rightarrow J/\Psi K+$ and $B+\rightarrow D^0 K+$

TOF and flavor tagging

• TOF has big effect on tagging purity

- 2σ K- π separation for p<1.6 GeV/c which covers ~57% of the B tracks
- Important for both OKT and SST-K ($\epsilon D^2 2 \rightarrow 4.2\%$ for SST)

Tagger Summary (CDF)

ε D ² (%)	Run-I	Run-II	Projection w/o TOF	Projection with TOF	Key improvement
SST-π/K	1.5±0.4	2.1±0.7	2.0	2.0 - 4.2	SVX/TOF
SLT-µ	0.6±0.1	0.7±0.1	1.0	1.0	CMX/IMU/ISL
SLT-e	0.3±0.1		0.7	0.7	Plug Cal/ISL
JetQ	1.0±0.3		3.0	3.0	COT/SVX
OKT				2.4	TOF

- Measurements with early data are consistent with projections
- Update soon with improved detector coverage and performance
- **Projection for CDF Bs mixing sensitivity will use:**

 $\varepsilon D^2 = 4\%$ (w/o TOF) $\rightarrow 5\%$ (with TOF)

Bs mixing sensitivity formula

Significance =

$$\frac{\left[\frac{S \varepsilon D^{2}}{2}e^{-\frac{\left(\Delta m_{s} \sigma_{t}\right)^{2}}{2}}\sqrt{\frac{S}{S+B}}\right]}{2}$$

- S = number of signal events
- S/B = signal/background ratio
- σ_t = proper time resolution ϵD^2 = effective tagging efficiency
- It is the "averaged" significance of analyses using likelihood fittings

significan
$$ce = \sqrt{2\Delta \log L} =$$

CDF Bs mixing prospect with 500pb⁻¹

• With current performance

- $-S=1600 \text{ event/fb}^{-1}$
- -S/B=2/1
- $-\epsilon D^2 = 4\% (SLT+SST+JetQ)$
- $-\sigma_{t} = 0.067 \text{ps}$
- 2σ measurement if $\Delta ms = 15ps^{-1}$ from 500pb⁻¹ data
 - Expect 590pb⁻¹ 680pb⁻¹ from Tevatron by 2004
 - Beat current limit from indirect measurements
 - Reach Standard Model favored region

CDF Bs mixing prospect with 2fb⁻¹

- Expect Tevatron to deliver luminosity of
 2.11fb⁻¹ (based line) and 3.78fb⁻¹(design) by 2007
- With modest improvement for CDF
 - Add Ds \rightarrow K*K, KsK and Bs \rightarrow Ds- $\pi + \pi \pi +$ S=1600 \rightarrow 2000 event/fb⁻¹
 - $-\,$ With improved TOF to enhance both SST and OKT

 $\varepsilon D^2 = 4\% \rightarrow 5\%$

– With L00 silicon and event-by-event beamline

 $\sigma_{ct} = 0.067 \rightarrow 0.05 \text{ps}$

CDF Bs mixing prospect by 2007

• Go beyond standard model preferred range 5σ measurement if $\Delta ms = 18 ps^{-1}$ with 1.7fb-1 data 5σ measurement if $\Delta ms = 24 ps^{-1}$ with 3.2fb-1 data

D0 Bs mixing sensitivity

- Detail in Vivek Jain's talk on Tuesday
- Projections with 500 pb⁻¹ data of inclusive muon

trigger

- Triggered muon used to
 reconstruct 15K Bs→Ds μ ν
- Triggered muon used as flavor tagger for 700 Bs \rightarrow Ds π

$\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ - Bs lifetime difference

- The mass difference $\Delta m_{_{\mbox{\scriptsize S}}}$ and lifetime difference $\Delta \Gamma_{\mbox{\scriptsize S}}$

of the two CP eigenstates are linked by

 $\Delta \Gamma_{\rm s} / \Delta m_{\rm s} = -3\pi/2 \cdot m_{\rm b}^2 / m_{\rm t}^2 \cdot \eta(\Delta \Gamma_{\rm s}) / \eta(\Delta m_{\rm s})$

- The QCD factor doesn't depend on CKM
- Δm_s and $\Delta \Gamma_s$ measurements are complementary
- $\Delta\Gamma_s$ could be large enough to be detectable ($\Delta\Gamma_s/\Gamma_s \sim 15\%$)

$\Delta\Gamma_s/\Gamma_s$ Measurements

- Three methods suggested for extracting $\Delta\Gamma_s/\Gamma_s$
- Fitting well-defined decay with two lifetimes
 - Fit $e^{-\Gamma_L t} + e^{-\Gamma_H t}$ for Bs \rightarrow Ds l v or Bs \rightarrow Ds⁺ π^-
- Separate CP-even/odd states by transversity analysis
 - Bs $\rightarrow J/\Psi \phi$ is the familiar channel to CDF/D0
- Branching ratio from a pure CP state decay
 - Bs \rightarrow Ds+Ds- a pure CP-even and triggered by CDF SVT trigger
 - Br(Bs \rightarrow Ds+Ds-) = $\Delta\Gamma_s/[\Gamma_s(1+\Delta\Gamma_s/2\Gamma_s)]$
 - Need to separate Bs \rightarrow Ds^{+(*)}Ds^{-(*)} with fine mass resolution

$\Delta\Gamma_{s}/\Gamma_{s}$ from Bs semileptonic decays

- •Plenty statistics from semileptonic decays
- •Suffer from poor lifetime resolution due to partial reconstruction
- •**Useful for limits** $\Delta\Gamma_s/\Gamma_s < 0.83 @95\%$ CL from 600 Run-I signals

 $\Delta ms > 5.8 \text{ ps}^{-1}@ 95\%$ CL from 700 SLT-tagged Run-I signals

$\Delta \Gamma_s / \Gamma_s$ from Bs $\rightarrow J / \Psi \phi$

•CP states follow distributions: $3/8 \cdot (1 + \cos^2 \Theta_T) \rightarrow \text{CP-even}$ $3/4 \cdot (1 - \cos^2 \Theta_T) \rightarrow \text{CP-odd}$ $\Theta_T = \text{Transversity angle}$

- •Run-I with 58 events gives $\Gamma^{CP-even}/\Gamma=0.778\pm0.090\pm0.012$
- •With 4K event \Rightarrow an error of 0.05 if $\Delta\Gamma_s/\Gamma_s=15\%$ (Run II B workshop)
- •CDF result with 300 events from 220pb⁻¹ is coming

Summary

- A lot of progress on flavor tagging from CDF/D0
- We are collecting $Bs \rightarrow Ds^-\pi^+$ at 1600 event/fb⁻¹
- With 500 pb⁻¹ data, Bs mixing measurement reaches the Standard Model preferred region ($\Delta m_s = 15 ps^{-1}$)
- With 2fb⁻¹ data, Bs mixing measurement will go beyond the preferred region (Δms>18ps⁻¹)
- **Precise** $\Delta \Gamma_s / \Gamma_s$ measurements are also underway

Ting Miao, Beauty 2003

Backup slides

CDF/D0 Detectors

Both detectors have very nice silicon device (lifetime), central tracking (mass), calorimeter & muon system (e/ μ ID) and high bandwidth trigger/DAQ system

CDF

Silicon vertex trigger (SVT) trigger displaced track and e/μ
TOF for particle ID 2σ K-π separation at 1.5 GeV
Excellent mass resolution DØ

Excellent muon coverage trigger μ for pT>1.5 and $|\eta|$ <2.0 Excellent tracking acceptance SMT+SFT covers $|\eta|$ <1.6 Silicon track trigger is coming

<u>Separating Bs \rightarrow Ds π from other B reflections</u>

Mass resolution is crucial in achieving decent S/B

New B result from D0**

D0 uses fully reconstructed B+

 -65 ± 17 out of 1193 B could be due from $B^{**0} \rightarrow B^{+}\pi^{-}$

• CDF Run-I used B semileptonic decays

- Fraction of B from $B^{**} = 0.28 \pm 0.06 \pm 0.03$

TOF performance

• TOF is working and we are working on to improve its reconstruction efficiency

♦→K K decays

$\Delta \Gamma_s / \Gamma_s$ from Bs \rightarrow Ds+Ds-

•Br(Bs \rightarrow Ds+Ds-) = $\Delta\Gamma$ s/[Γ s(1+ $\Delta\Gamma$ s/2 Γ s)]

Theory uncertainty could be large

•Separates background of Ds* \rightarrow Ds γ using fine mass resolution

Also introduce 3% error on proper time

•32 \pm 17 Bs \rightarrow Ds^{+(*)}Ds^{-(*)} \rightarrow $\phi \phi$

 $\Delta\Gamma_{s}/\Gamma_{s}=0.25 + 0.21 - 0.14$ (ALEPH)

• Channel is trigged with SVT of CDF

Br (Bs \rightarrow Ds+Ds-)/Br(Bs \rightarrow Ds+ π -) \approx 2

Reconstruction efficiency will be lower

GEANT for CDF

(Run II B workshop)