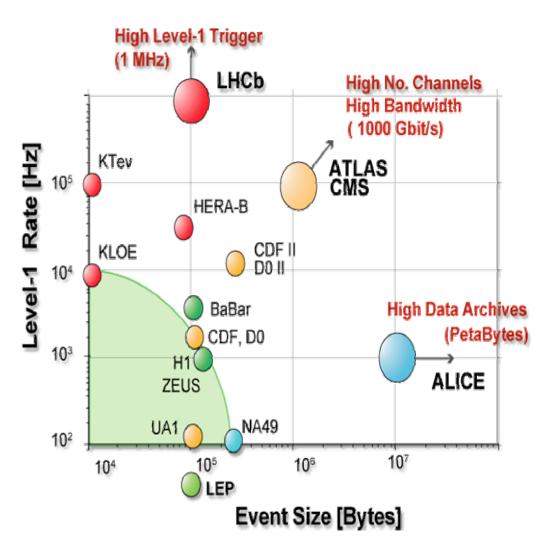
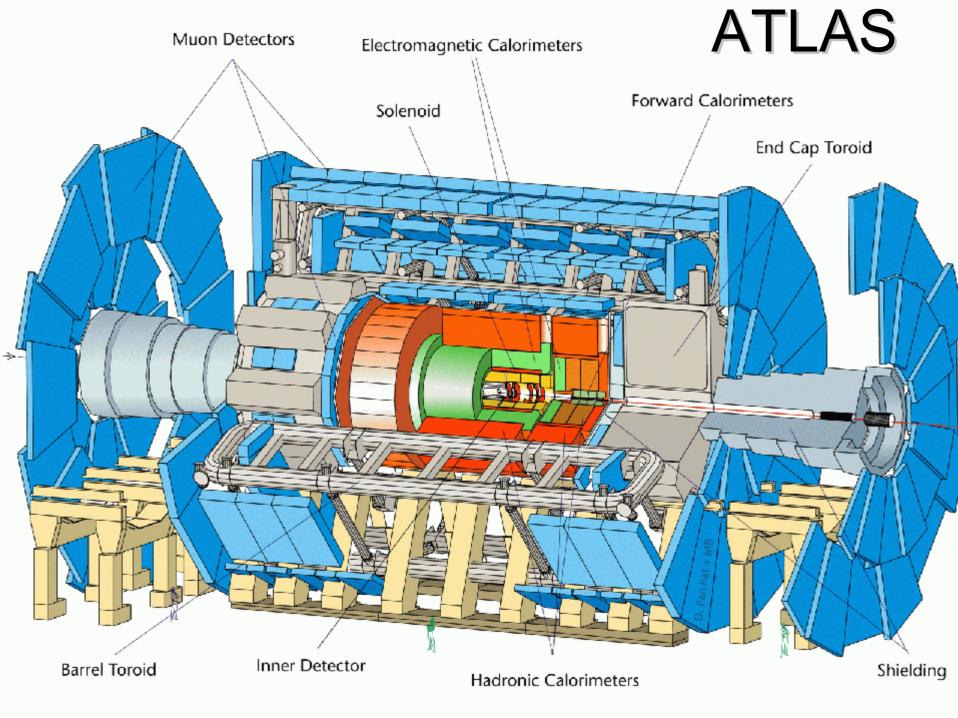
The ATLAS B-physics Trigger

Simon George Royal Holloway, University of London, UK On behalf of the ATLAS T/DAQ group


9th International Conference on
B-Physics at Hadron Machines
Beauty 2003 October 14 - 18
Carnegie Mellon University



LHC and ATLAS

• LHC

- 14 TeV centre-of-mass p-p, bunch crossing @ 40 MHz
- target peak luminosity $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ initially, rising to $1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- 4.6 23 interactions per bunch crossing
- discovery physics
 "needle in a haystack"
- ATLAS
 - decision every 25 ns
 - about 10⁸ channels
 - mass storage limits accept rate to O(100MB/s)

Contents

- News headlines
- ATLAS challenge and physics programme
- T/DAQ system overview
- RoI strategy extended to B-physics
- Start up scenario
- Rates
- Trigger strategies
- Timing and resources
- Conclusion

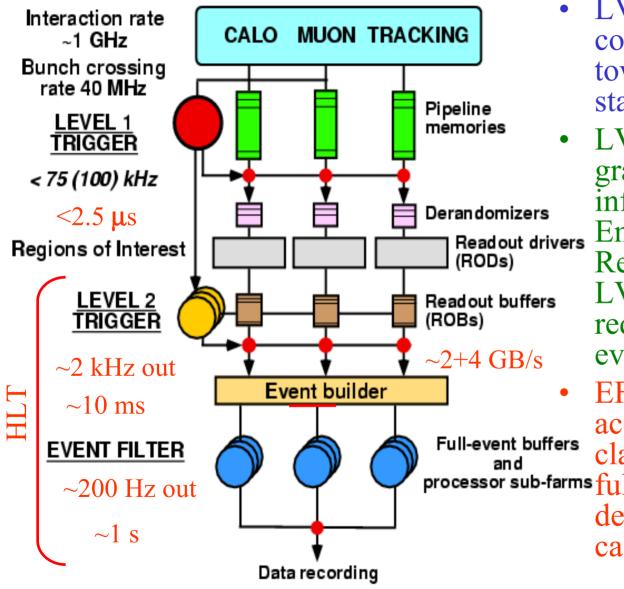
News since last Beauty conference

- Technical Design Report

 High Level Trigger, Data Acquisition and Control
- Further work on how to maintain B-physics programme within constraints
 - Higher target start-up luminosity
 - Incomplete detector at start up
 - Cost constraints for T/DAQ
- Software further advanced
 - new performance measurements

17 October 2003

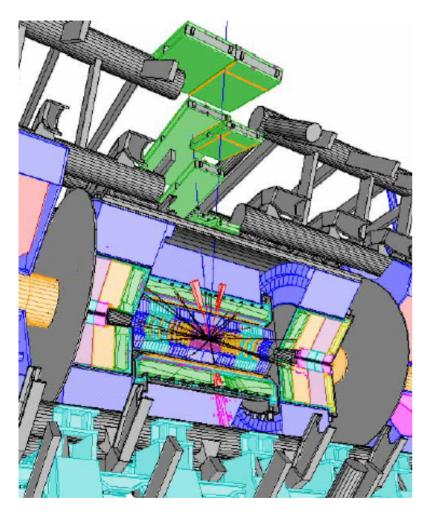
B-physics triggering – the challenge


- About 1% of collisions produce a bb pair
- Trigger must therefore be more selective
- At luminosity $\geq 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$: di-muon trigger
- At lower luminosities: introduce additional semi-exclusive HLT Selection based on single muon and partial reconstruction of B-decays π^{-1}
- Channels of interest, e.g. CP violation
 - $\quad B_d \rightarrow J/\psi \ K_S \ (J/\psi \rightarrow ee \ and \ \mu\mu)$
 - $B_d \rightarrow \pi^+ \pi^-$ (or generally any π/K combination)
- B_s oscillations
 - $B_{s} \rightarrow D_{s}\pi/a_{1}, D_{s} \rightarrow \phi\pi$
- Final state analysis
 - $B_s \rightarrow J/\psi \phi$, $B_s \rightarrow J/\psi \eta$ (enhanced by new physics)
- Rare decays
 - $\quad B_{d,s} \to \mu \mu(X)$
- B-hadron production
 - B_c properties, Λ_b polarisation (J/ $\psi \rightarrow \mu\mu$)
 - precision measurements
- See Paula Eerola's talk for physics programme.

17 October 2003

Simon George - ATLAS B-physics Trigger - Beauty '03

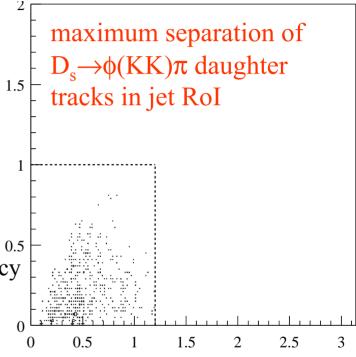
(ee) Κ⁰(ππ)


ATLAS T/DAQ system overview

- LVL1 decision based on coarse granularity calo towers and muon trigger stations
- LVL2 can get data at full granularity and combine info from all detectors.
 Emphasis on fast rejection. Region of interest from LVL1 used to reduce data requested to few % of full event.
- EF refines selection according to LVL2 classification, performing fuller reconstruction. More detailed alignment and calibration data available.

1 / October 2003

Region of interest mechanism


- LVL1 selection is mainly based on local signatures identified at coarse granularity in muon detectors and calorimeter .
- Further rejection can be achieved by examining full granularity muon, calo and and inner detector data in the same localities
- The **Region of Interest** is the geometrical location of a LVL1 signature.
- It is passed to LVL2 where it is quickly translated into a list of corresponding readout buffers
- LVL2 requests RoI data sequentially, one detector at a time, only transfers as much data as needed to reject the event.
- The RoI mechanism is a powerful and important way to gain additional rejection before event building
- Order of magnitude reduction in dataflow bandwidth, at small cost of more control traffic

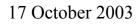
Two strategies for B-physics triggering

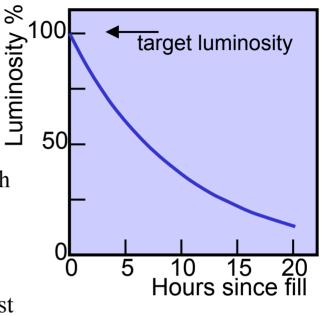
- At luminosity $\geq 2 \times 10^{33}$ cm⁻²s⁻¹: di-muon trigger
- For low luminosity semi-inclusive B-physics Maximum ∆r selection ($\sim 1 \times 10^{33}$):
- 1) RoI-guided
 - LVL1 single muon (e.g. $p_T > 8 \text{GeV}$) + jet or EM
 - LVL2 validate muon
 - LVL2 & EF reconstruct tracks in jet/EM RoI, _ select J/ ψ (ee) B_d(hh) D_s($\phi\pi$)
 - **Pro**: significantly reduces resources (~10%)
 - Con: could be too many RoIs or too low efficiency

2) Full scan

- LVL1 single muon (e.g. $p_T > 8 \text{ GeV}$)
- LVL2 validate muon
- LVL2 reconstruct tracks in full acceptance of SCT + Pixels, select $B_d(hh) D_s(\phi \pi)$
- $J/\psi(ee)$ requires further resources for TRT scan
- EF full scan or use LVL2 tracks to form RoI
- **Pro**: higher efficiency than option 1
- **Con**: needs more resources (CPU and network)

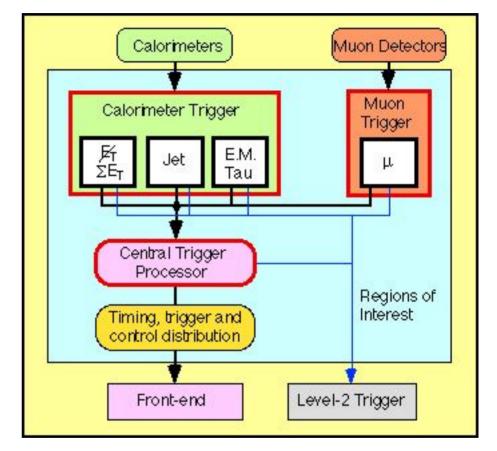
Maximum $\Delta \phi$ [rad]


17 October 2003

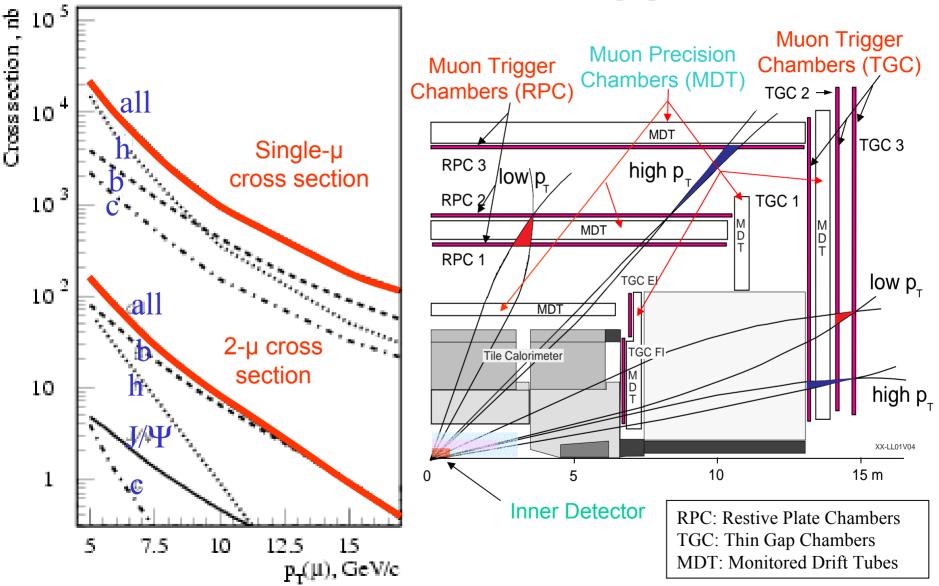

B-Trigger for start up conditions

- At start up, expect
 - luminosity varying from fill to fill
 - variable beam-related background
 - incomplete detector
 - understanding and tuning of detector
 - limited T/DAQ processing capacity and bandwidth

- Fall by factor of ~ 2 from start of fill to end of coast
- Initial T/DAQ system built to requirements of target peak luminosity (2×10^{33})
- As luminosity drops, use spare capacity for B-physics triggers
- "Checkpoint" feature of run control system planned to enable rapid update of configuration mid-run
- Robust algorithms
 - w.r.t. noise, alignment
- Flexible configuration
 - adapt thresholds, pre-scales and other parameters to cope with varying noise, luminosity, etc.

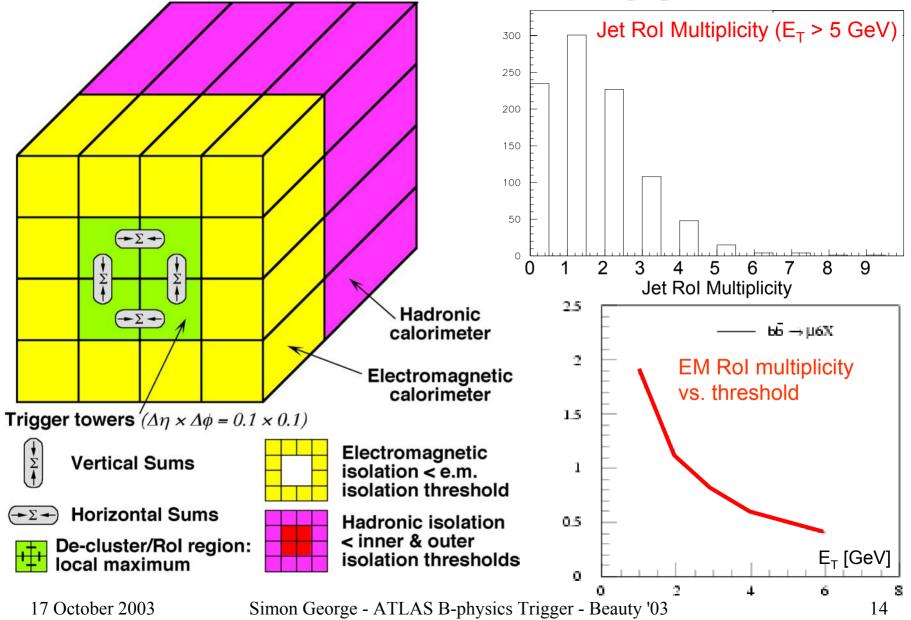

Estimated Trigger Rates

	2 × 10 ³³ cm ^{−2} s ^{−1}		$1 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	
Trigger	LVL2	EF	LVL2	EF
$\mathrm{B}_{d,s} \to \mu^+ \mu^-(X)$	200 Hz	small	100 Hz	small
$J/\psi(\mu^+\mu^-)$		10 Hz		5 Hz
$D_s(\phi \pi)$	-	-	60 Hz	9 Hz
Β(ππ)	-	-	20 Hz	3 Hz
J∕ψ(ee)	_	_	10 Hz	2 Hz
Total	200 Hz	10 Hz	190 Hz	20 Hz

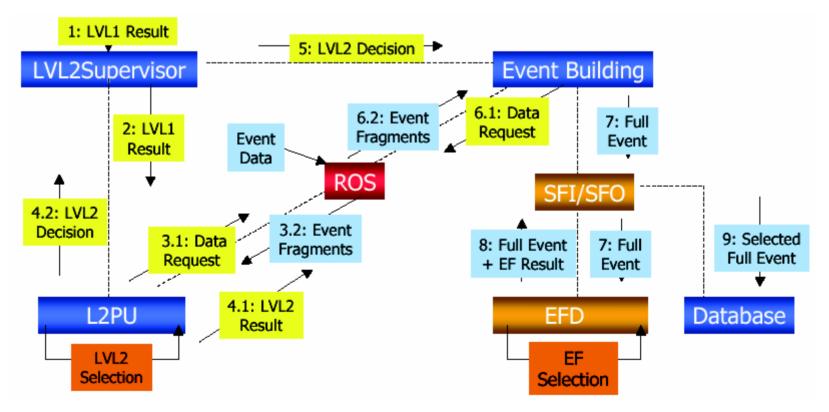

17 October 2003

LVL1 Overview

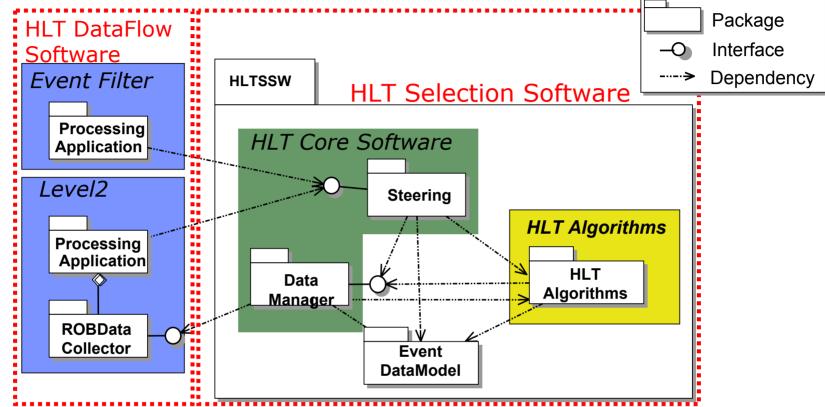
- Identify basic signatures of interesting physics
 - muons
 - em/tau/jet calo clusters
 - missing/sum E_T
- Hardware trigger
 - programmable and custom electronics (FPGA + ASIC)
 - programmable thresholds
- Decision based on multiplicities and thresholds


LVL1 Muon trigger

17 October 2003

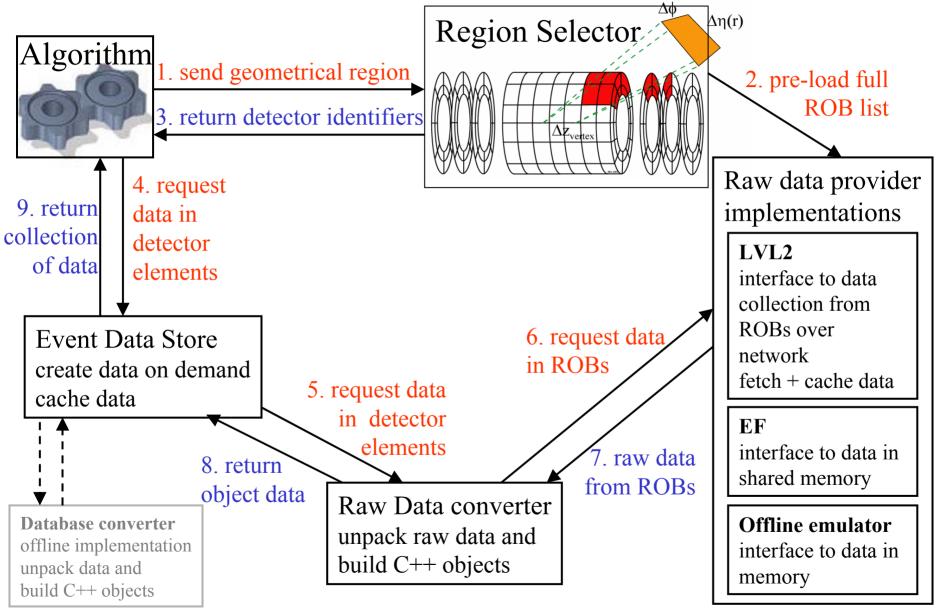

Simon George - ATLAS B-physics Trigger - Beauty '03

LVL1 Jet & EM triggers

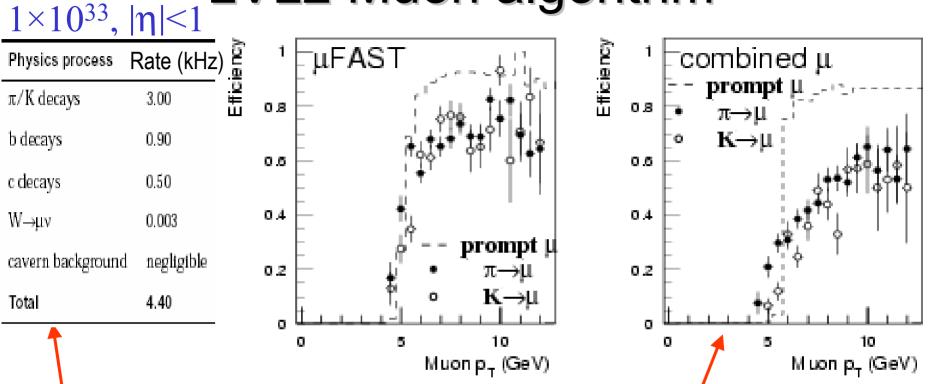


High Level Trigger

- Commodity electronics (PCs, switches)
 - few custom components e.g. readout buffers
- Software based
 - large and complex software engineering project

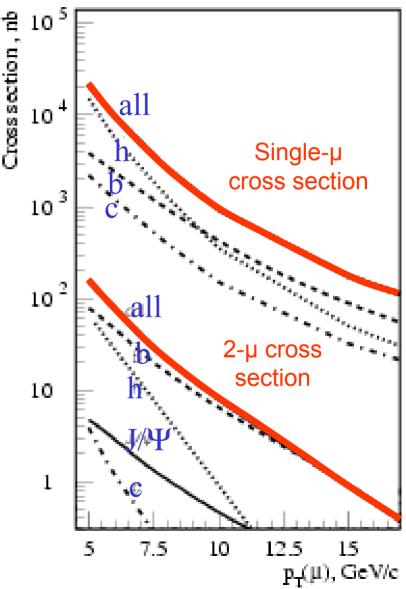

HLT Event Selection Software

- Common selection software for LVL2, EF, offline differences hidden behind interfaces
- Re-use of offline software in framework, basic services, data unpacking
- LVL2 has specialised algorithms and constraints of multi-threading
- EF re-uses offline reconstruction algorithms (toolkit approach)
- Integration tool "AthenaMT" provides single-PC test environment for offline software
- Test data has fully simulated detector, format expected from readout electronics

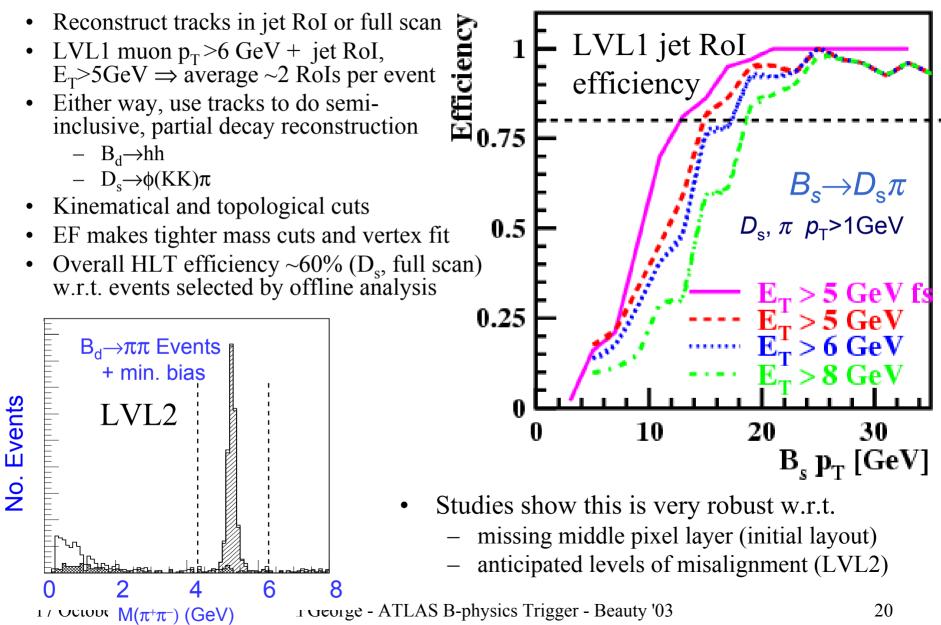

17 October 2003

Rol mechanism and data access

17 October 2003

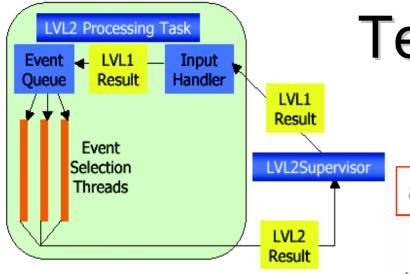

LVL2 Muon algorithm

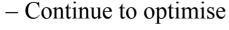
- LVL2 MuFast algorithm uses data from precision chambers
 - better p_T measurements allows tighter threshold, rejects low- p_T background
- output rates after LVL2 muon-spectrometer trigger still dominated by π/K decays
- reject $\pi/K \rightarrow \mu$ by combining muon and inner detector tracks
 - z, ϕ and p_T matching
 - p_T resolution further improved
 - $-~\pi/K \rightarrow \mu$ rate reduction by factor 3
- Total rate (extrapolate from barrel to full detector)
 - ~5 kHz for a 6 GeV threshold and $1 x 10^{33}$

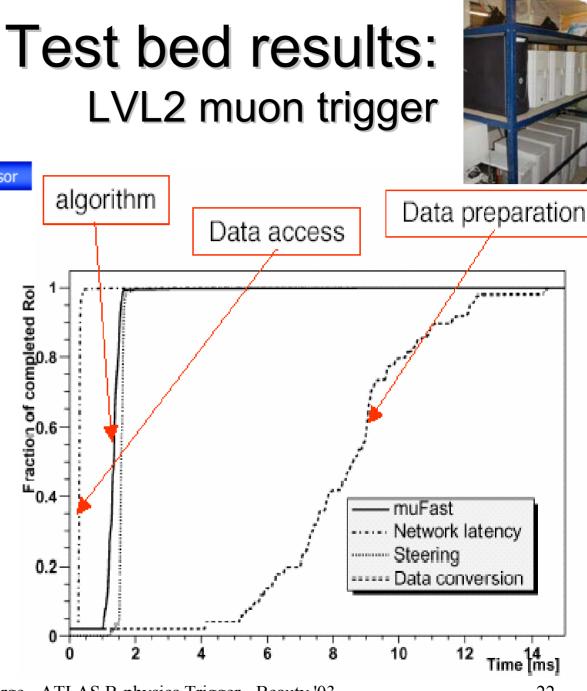

Di-muon trigger

- LVL1 trigger efficient to low p_T
 - down to $p_T > 5$ GeV in barrel, 3 GeV in endcaps.
 - Actual thresholds determined by rate limitations
- LVL1 rate at 2×10^{33} will be a small fraction of the total LVL1 rate, <1 kHz for a reasonable threshold around 6 GeV
 - dominated by heavy flavour decays
 - Subject to uncertainties in low p_T rate
- LVL2 can give e.g. ~200 Hz
 - sharpen p_T threshold
 - Resolve double counting
- EF does near offline-quality track reconstruction, vertex fit and mass cuts
 - to select for example J/ ψ decays
 - − ~10 Hz
- At all levels, cuts can be tuned to optimise rate vs. efficiency
 - Further studies

17 October 2003


Hadronic final states


Muon-electron final states


- To select channels such as
 - B_d ->J/ $\psi(ee)K_s$ with opposite side muon tag, or
 - B_d ->J/ $\psi(\mu\mu)$ Ks with opposite side electron tag
- Two options:
 - Use LVL1 EM RoIs to find low- E_T electrons
 - Full reconstruction of tracks in TRT (for electron identification)
- LVL1 EM cluster $E_T > 2$ GeV gives average of 1 Rol/event
 - about 80% efficiency to find RoI for both daughters of J/ψ ->ee, when they both have p_T >3GeV.
- LVL2 confirm cluster at full granularity in calorimeter, including presampler, then find matching track in SCT+pix (+TRT).
- Tracks reconstructed again in EF, plus vertex fit quality and decay length cuts.
- Conclusion
 - Using RoI guidance is much faster (typical size 0.2x0.2) than reconstructing the full volume of the inner detector
 - but the LVL1 lowest possible threshold is not efficient until a higher p_T than the full scan permits.

17 October 2003

- Dual 2.2 GHz Xeon
- Confirmation of LVL1 muon trigger
- "Offline" framework and services re-used
- Prep time dominates – saves algo time
- Conservative result
 - high luminosity conditions, x2 cavern bg
- Already adequate

17 October 2003

Resource estimates

- Estimates take into account
 - Reduced rates of later steps in sequential processing scheme
 - All aspects of processing time to the best knowledge we currently have
 - Extrapolated to 8 GHz CPUs
- Overall target
 - LVL2 target of 10 ms x 25 kHz LVL1 rate gives 250 CPUs
 - Scales to 750 CPUs for full system at 75 kHz LVL1 rate
 - From latest studies of high p_T physics it looks like this is achievable.
- For lower luminosity fills, or as lumi drops during a fill
 - Spare capacity due to lower LVL1 rate
 - Allows general lowering of thresholds and pre-scale factors
 - Some room for additional B-physics based on muon & calo RoI
- Conclusion
 - Following detailed studies, current understanding is that the resources needed for the RoI-guided B-physics trigger can be found within the planned resources.
 - Based on di-muon trigger at higher luminosity $(2x10^{33})$
 - Introducing other triggers at lower luminosity ($\sim 1 \times 10^{33}$)

Conclusions

- The latest picture of ATLAS & LHC at start up does not look so favourable for B-physics, but ATLAS has responded with a variety of flexible trigger schemes to make the most of it.
- RoI-based strategy allows a full programme at modest resource cost, with slightly reduced trigger efficiency
- Take advantage of beam-coast and lower-lumi fills to trigger on B-physics at lower luminosities
- Algorithms are robust enough for initial detector and conditions
- For muon spectrometer and calorimetry, now have simulation of realistic raw data and full chain of algorithms to retrieve, unpack and process it.
- Further studies of RoI strategy will be done and more of the software will be tested and optimised through test bed deployment
- Now looking towards commissioning and first collisions in 2007 when we hope to record B-physics data from ATLAS.

17 October 2003