B Physics in the LHC Era

R. Cahn

Beauty 2003 - Carnegie Mellon University October 17, 2003

Is the B the K of the 21st Century?

K meson has driven particle physics:

- Strangeness
- Mixing of neutral kaons
- $\tau \theta$ puzzle leads to parity violation
- \bullet Strangeness leads to SU(3) leads to quarks
- CP violation in K_L decay
- Absence of neutral weak currents leads to charm
- ϵ'/ϵ shows direct CP violation

21st Century Agenda: Page One

- Electroweak-Symmetry Breaking
- Grand Unification/Extra Dimensions
- Baryon-Antibaryon Asymmetry
- Dark Matter
- Dark Energy

B Physics: Virtual Attack

What's in the box? SUSY?, extra generations, extra dimensions?

Today

Tomorrow

 $B \rightarrow J/\psi K_S$

 $B \rightarrow \phi K_S$

- 1. Measure: mixing angle and possible new physics
- 2. Theory motivation: new physics could compete
- 3. Experimental problems: low branching ratio

4. Precision in $\sin 2\beta$

BaBar/Belle		BTeV/LHC-b	Super B
0.11 ab^{-1}	$0.5 { m ~ab}^{-1}$	$10^{7} { m s}$	10 ab^{-1}
$0.43 \oplus 0.07$	0.23	0.14	0.056

B_s oscillations: x_s

1. Measure: mixing in $B_s - \overline{B}_s$ system

2.
$$\frac{x_s}{x_d} = \frac{m_{B_s}\eta_{B_s}B_{B_s}f_{B_s}^2}{m_{B_d}\eta_{B_d}B_{B_d}f_{B_d}^2}|V_{ts}/V_{td}|^2 \rightarrow 10\% \text{ uncertainty in } |V_{td}/V_{td}|$$

- 3. Experimental problems: need $B_s!$
- 4. CDF/D0 should measure x_S with good precision
- 5. Lattice calculations needed to get full benefit of measurement

D_a⁺ Mass [GeV/c²]

[–] Typeset by Foil $T_{\!E\!} \! \mathrm{X}$ –

Could this be LHC Era Physics? CDF Estimate [K. Pitts, L-P 2003]

- Currently
 - 1600 signal events / fb $^{-1}$
 - Tagging efficiency: $\epsilon D^2 = 4\%$
 - Time resolution: $\sigma = 67 \ fs$
 - Sensitivity: 2σ for $\Delta m_s = 15 \,\mathrm{ps}^{-1}$ with $\approx 0.5 \,\mathrm{fb}^{-1}$
- "Modest Improvements"
 - 2000 signal events / fb $^{-1}$ [better trigger, more modes]
 - Tagging efficiency: $\epsilon D^2 = 5\%$ [kaon tagging]
 - Time resolution: $\sigma = 50 \ fs$
 - Sensitivity: 5σ for $\Delta m_s = 18 \,\mathrm{ps}^{-1}$ with $\approx 1.7 \,\mathrm{fb}^{-1}$
 - Sensitivity: 5σ for $\Delta m_s = 24 \,\mathrm{ps}^{-1}$ with $\approx 3.2 \,\mathrm{fb}^{-1}$

 $B_s \rightarrow J/\psi \phi, J/\psi \eta'$

- 1. Measure: analog of $B \rightarrow J/\psi K_S$ No asymmetry to lowest order.
- 2. Theory motivation: new physics with phase of $B_d \overline{B}_d$ mixing would show up
- 3. Experimental problems: requires B_s , good spatial resolution

4. BTeV reach in $\sin 2\chi : \pm 0.024$

 $B \rightarrow \pi \pi$

- Measure: mixing angle (arg M_{12}) plus 2γ , i.e. $2\pi 2\alpha$
- Theory concern: prominent penguin contribution
- Experimental problems: small branching ratio for $\pi^0\pi^0$
- Penguins are $\Delta I = 1/2$ operators, trees $\Delta I = 3/2, 1/2$
- Use isospin to isolate I = 2 final state (no penguin contribution)

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Fighting Penguins in $B \rightarrow \pi \pi$

 α_{eff} from time-dep. $B^0, \overline{B}^0 \rightarrow \pi^+ \pi^ 2\alpha = 2\alpha_{eff} + \phi - \phi'$ (Four-fold) Ambiguity: $\phi \rightarrow -\phi$

• Measure time-integrated $\Gamma(B^+ \rightarrow \pi^+ \pi^0) = \Gamma(B^- \rightarrow \pi^- \pi^0)$

• Separately measure time-integrated $\Gamma(B^0 \rightarrow \pi^0 \pi^0)$, $\Gamma(\overline{B}{}^0 \rightarrow \pi^0 \pi^0)$

$$\cos\phi = \frac{\mathcal{B}(\pi^{+}\pi^{0}) + \frac{1}{2}\mathcal{B}(\pi^{+}\pi^{-}) - \mathcal{B}(\pi^{0}\pi^{0})}{\sqrt{2\mathcal{B}(\pi^{+}\pi^{-})\mathcal{B}(\pi^{+}\pi^{0})}}$$

MC Study Shows Ambiguities Bite

- Toy Monte Carlo study (RNC and Roodman):
- $BR(B^0 \rightarrow \pi^0 \pi^0)$ now known:
 - $(2.1 \pm 0.6 \pm 0.3) \times 10^{-6}$ [BaBar]
 - $(1.7 \pm 0.6 \pm 0.2) \times 10^{-6}$ [Belle]

Histogram of 1000 experiments: input

- Branching ratios are in units of 10^{-6} .
- Background based on BaBar results

$B^{\pm} \rightarrow \pi^{\pm} \pi^{0}$	4.1
$B^0 \rightarrow \pi^+ \pi^-$	4.7
$\overline{B}{}^0 \rightarrow \pi^+ \pi^-$	4.7
$B^0 \rightarrow \pi^0 \pi^0$	2.5
$\overline{B}{}^0 \rightarrow \pi^0 \pi^0$	1.5

- Precision in α in $\pi\pi$ requires enormous integrated luminosity
- This seems to be a possibility only for a $10^{36}\,{
 m cm^{-2}\,s^{-1}}\;e^+e^-$ machine
- Alternatives $\rho\pi$ and even $\rho\rho$ look interesting

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

 $b \rightarrow s\gamma$

- 1. Major γ bkgd from π^0 , η , etc.
- 2. Lowest order is one loop so new physics should be prominent

- 3. Need model to get full spectrum
- To reduce background, require $E_{\gamma}^* > E_{min}$
- Require lepton from other B to remove continuum.
- Need theory for spectrum, not just total rate
- Prediction for spectrum above 2.2 GeV uncertain by about 15%

[–] Typeset by FoilT $_{E}$ X –

 $b \rightarrow s \ell \ell$

- 1. Measure exclusive decays and sum, excluding in J/ψ etc.
- 2. Theory issue: probes γ, Z and W box diagrams

3. Experimental: clean for $K^*\ell\overline{\ell}$

$b \rightarrow s \ell \overline{\ell}$ Forward-Backward Asymmetry

- Comes from interference between axial (\mathcal{O}_{10}) and vector $(\mathcal{O}_{7,9})$
- Need to understand various form factors evaluated at $s=m_{\ell\bar{\ell}}^2$
- New Physics can enter through $\mathcal{C}_{7,9,10}$

Simulation from BTeV, 2500 events/y

Traditional goal of *B*-physics experiments

- High precision using lots of data
- Find discrepancy with Standard Model
- Ascribe difference to virtual particles in Box
- Read announcement of discovery of supersymmetry in NYT

Two approaches:

B physics: shake the Box, listen

LHC: open the Box

Who discovered the W boson?

History of Virtual Discoveries

- 1934: Enrico Fermi (or Ernest Rutherford in 1898) discovered the W
- 1973: Gargamelle discovered the Z
- 1974: Ben Lee and Mary K. Gaillard discovered charmed particles
- 1994: LEP discovered the t quark

Predictions of real particles from virtual effects are astonishing. But few are convincing until the real thing appears.

Context for Next Generation

B Physics Experiments

Possible scenarios at LHC

ATLAS

• Discover new spectroscopy: jackpot for particle physics

 Discover single, orthodox Higgs boson: happy for 24 hours

Strongly interacting W, Z (disfavored):
 life is tough

• ???

Quark Flavor Physics in LHC Era

- If there is a new spectroscopy:
 - Confirm predicted radiative corrections?
 - Discriminate between possible models?
- If there is an orthodox Higgs
 - Confirm Standard Model predictions
- Something else
 - Confirm (modified?) Standard Model predictions
- A higher standard:
 - With competition from LHC, it will not be enough to find hints of new physics.
 The demands on precision and clean interpretation will be much greater.

Current Unitarity Triangle

- Precise experiments
- Theory uncertainties dominate

Theory Must Become as Rigorous as Experiment

- Lattice gauge calculations needed to sharpen tests of unitarity triangle.
- Effective theories derived from QCD needed for dynamical understanding.
- An experimental result lacking statistical and systematic errors is meaningless.
- Theory must meet same standard if it is to be used to challenge standard model.
- Give consideration to increased support for lattice work, contingent on review comparable to review of proposed experiment: real schedule for attaining verifiable performance standards.

Spirit of Next Generation Flavor Physics

- Standard Model likely to have been verified to basic level:
 - Success of SM in $\sin 2\beta$ impressive
 - Had been likely target for deviation
- Only deviations that are truly convincing are likely to be interesting
 - 2 σ : 50 theory papers
 - 3 σ : 250 theory papers
 - 5 σ : strong sign of effect

B Physics isn't just looking for New Physics

- Standard Model is extraordinary. It deserves thorough elucidation.
- Unitarity Triangle demands verification despite LHC advantage in New Physics.
- \bullet QCD remains incompletely understood. B decays provide excellent stage for examination.
- B mesons are source for other phenomena
 - $B \rightarrow DD_s(2317)$
 - $B \rightarrow \psi(3870)K$

Particle Physics circa 2010

- If a new spectroscopy is found at LHC
 - Those at LHC will be ecstatic.
 - Electrophiles will have a compelling case for LC.
- If no new spectroscopy is found at LHC
 - Mood at CERN will not be good.
 - LC is very improbable.
- $\bullet\,$ In either case, there will be an active B physics program
 - At CERN, LHCb might be the most interesting experiment.
 - BTeV could be leading (only?) non-neutrino HEP experiment in US.
 - At SLAC and KEK, accelerators will be pushed to higher and higher luminosity.