9th International Conference on B-Physics at Hadron Machines

We will review recent results in the field of B-Physics and CP violation and explore the experimental reach of current and future hadron machines.

October 14-18, 2003 • Carnegie Mellon University • Pittsburgh, Pennsylvania USA

ty 2003

International Advisory

I. Butler (FNAL) R. Cashmore (CERN) D. Denegri (Saclay) N. Ellis (CERN) S. Erhan (UCLA) H. Evans (Columbia) E Ferroni (Rome) M. Gronau (Haifa) J.D. Hansen (Copenhagen) N Harnew (Oxford) K. Kinoshita (Cincinnati) N. Lockyer (Pennsylvania) H. Newman (Caltech) J. Rosner (Chicago) Y. Rozen (Haifa) P. Schlein (UCLA), Chair P. Sphicas (CERN) S. Stone (Syracuse)

Local Organizing Committee R. Brice: (CMU) F. Ferguson (CMU) E. Gilman (CMU) A. Leibovich (Pitt) L.-ELI (CMU) M. Puulini (CMU), Chair I. Rothstein (CMU) J. Russ (CMU) P. Shepard (Pitt) H. Vogel (CMU) L. Wolfenstein (CMU)

Sponsors U.S. Department of Energy U.S. National Science Foundation Carnegie Mellon University

Web site: www-hep.phys.cmu.edu/beauty2003/ Email: beauty2003@phys.cmu.edu

Carnegie Mellon

 $A\lambda^{3}(\rho - i\eta)$

B Physics **@** CMS

N.Marinelli IASA – Athens

On behalf of the CMS Collaboration

Oct 14-18 2003 Carnegie Mellon University Pittsburg, Pennsylvania

Contents

Introduction

- Simulation/reconstruction software
- Trigger issues
- Some issues about Tracking
- Exclusive B decay channels
- Results
- Conclusions

Introduction

Simulation & Reconstruction Software

Event Generation: PYTHIA 6.158 Interface to the user: CMKIN Fortran based. Their equivalent Minimum bias event pile-up C++ version is Gluon splitting, heavy guark fusion, on the way flavour excitation taken into account for bb events production **Detector** description and simulation: CMSIM based on Geant3 Geometry and material budget as in 2002 C++ Object Oriented Detector response: Same software for online and offline Digitization, noise, effects due to pile-up, ... reconstruction and Level 1 trigger simulation selection **Reconstruction:** Deposits in the calorimeters Muons Tracks Primary and secondary vertices

L1 Trigger

Low Luminosity L1 Trigger Table (Prototype)					
Trigger type	<u>Threshold</u>	<u>Indiv.</u>	<u>Cumul</u>		
	(ε=95%) (GeV)	<u>Rate (kHz)</u>	<u>rate</u>		
			<u>(kHz)</u>		
1e/ γ, 2e/ γ	29, 17	4.6	4.3		
1 μ, 2 μ	14, 3	3.6	7.9		
1τ, 2τ	86, 59	3.2	10.9		
1-jet,3-jets, 4-jets	177,86,70	3.0	12.5		
Jet * $MissE_T$	88 * 46	2.3	14.3		
e * jet	21 * 45	0.8	15.1		
Min-bias		0.9	16.0		

Designed to cover the widest possible range of physics for discovery

-Total L1 allocated rate-50 KHz × 1/3 safety factor

B Physics selection triggered @ L1 by single or di-muon triggers
 Particles from B decays have relatively soft spectrum
 Important keeping the L1 threshold as low as possible

Muons are preferred to electron because of the lower trigger threshold

Beauty 2003, Oct 14-18 2003

Muons in the High Level Trigger

High-Level Trigger Tracking

Limited amount of CPU time available for trigger decision: 500 ms on a 1GHz machine possibly 50 ms in 2007 Regional seed generation

> Limited to some region identified by Lvl1 objects (e.g. cone around μ direction)

Reduce

of track seeds# of operations per seed

HLT Tracking does not need to be as accurate as in the offline

Partial/Conditional Tracking

Stopped when:

- N hits are reconstructed
- P_T resolution > given threshold
- P_T value < given threshold</p>

Primary vertex reconstruction

Track straight line approximation in z

Pixel hit pairing in R-z and R-φ

 d₀≤1 mm , P_T>1 GeV

 Matching with 3rd layer → track candidate
 PV candidate if ≥ 3 track cross z-axis
 PV list → Signal vertex from ΣP_T and N_{tracks}
 Cleaning of tracks not pointing to PV

Average time: 50msec @1 GHz

Beauty 2003, Oct 14-18 2003

Partial Tracking

Tracking time proportional to the number of hits Good efficiency/ghost rate & resolution with just 5 hits

Beauty 2003, Oct 14-18 2003

N. Marinelli

IASA-Athens

Φ Β_S→μ⁻μ⁺

Exclusive B decay channels

Three decay channels chosen as benchmark

\$ B_S→**J**/ψ φ→μ⁻μ⁺ **K**⁻**K**⁺

- FCNC b \rightarrow s, loop-level process in SM
- Indicator of possible new physics
- Observable before LHC only if drastically enhanced
- Unique signature.....but BR ~ O (10⁻⁹)
- Gold-plated decay mode for CP-violation
 Sensitive to new physics
- Won't be studied with big accuracy before

LHC

Triggered @ L1 by the presence of 2μ $B_{S} \rightarrow D_{S}\pi^{+} \rightarrow \phi\pi^{-}\pi^{+} \rightarrow K^{-}K^{+}\pi^{-}\pi^{+} \cong B_{S}^{0} - \overline{B}_{S}^{0}$ Mixing $u,c,t \rightarrow b$ $w \neq u,c,t \rightarrow b$ $u,c,t \rightarrow b$ $u,c,t \rightarrow b$ $u,c,t \rightarrow d$ $u,c,t \rightarrow d$ $u,c,t \rightarrow d$

Triggered @ L1 by the presence of 1μ (from the semileptonic decay of the other b hadron in the event)

Beauty 2003, Oct 14-18 2003

Q L1: 2µ trigger, P_T > 3 GeV, |η| < 2.1 Q High Level Trigger: <u>Regional tracking</u> | look for pixel seeds only in a cone around the 2µ, with P_T > 4 GeV and d₀ < 1mm, and compatible with PV <u>Conditional tracking</u> | reconstruct tracks from good seeds × Stop reconstruction if P_T < 4 GeV @ 5σ × Keep only tracks with σ(P_T)/P_T > 2%, N_{hit =6}

IF 2 Opposite Signs tracks found Calculate the invariant mass Retain pairs with a) $|M_{\mu\mu}-M_{B_s}| < 150$ MeV b) Vertex $\chi^2 < 20$ & d₀ > 150 μ m

Lvl-1 E	HLT E	Global 8	Events/ 10fb ⁻¹	Trigger Rate
15.2%	33.5%	5.1%	47	<1.7Hz

Beauty 2003, Oct 14-18 2003

N. Marinelli

Beauty 2003, Oct 14-18 2003

× 1st step : J/ ψ reconstruction → Retain muon pairs with $|M_{\mu\mu}-M_{J/\psi}| < 100 \text{ MeV & Vertex } \chi^2 < 10 & d_0 > 200 \mu \text{m}$ × 2nd step: φ and B_s reconstruction Regional/conditional tracking around the J/ ψ direction + $|M_{KK}-M_{\phi}| < 10 \text{MeV}$ Then invariant mass $|M_{J/\psi\phi}| - M_{B_s}| < 60 \text{ MeV} + B_s$ vertexing

× 800ms

LvI-1 E	HLT step 1 E	HLT step 1 Rate	HLT step 2 8	HLT step 2 Rate	Events/ 10fb ⁻¹
16.5%	13.7%	14.5 Hz	8.7%	<1.7Hz	83800

Beauty 2003, Oct 14-18 2003

N. Marinelli

 B_S →J/ψφ → μμ KK

HLT mass resolutions

The strong solenoid magnetic field

Good B_s mass resolution and lower background

B_S → J/ψφ → μμ KK

Old CMS analysis (CERN-2000-004) not updated yet

Angular distribution analysis Expected number of signal evts ~600K (yield with 30fb⁻¹)

Trigger was NOT optimized

\sim			
Š	30		
fΔΓ		FN II	
oto			
err	20	\mathbb{N}	
ative			
Rel			
	10		
		···· background 30 %	
		background 15 % background 0 %	
	0		
		200 400 6 00	
		Statistics (10 ³)	

	۵۲s	φ _s (x _s =20)	φ _s (× _s =40)
Value	0.15xГs	0.04	0.04
Error	8.0%	0.014	0.03

Expected yields from HLT: ~300K with 40fb-1

 $\sigma(\Delta\Gamma_s)/\Delta\Gamma_s \sim 12\%$ $\delta\phi_s(x_s=20) \sim 0.02 \text{ rad}$ $\delta\phi_s(x_s=40) \sim 0.04 \text{ rad}$

Beauty 2003, Oct 14-18 2003

N. Marinelli

	$B_s \rightarrow \mu\mu$	$B_s \rightarrow J/\psi \phi$
σ (×) μ m	47.5 ±3.63	55.3 ±0.95
σ (z) μ m	71.5 ± 1.3	72.7 ±1.4
CPU time msec	1.9	3

Beauty 2003, Oct 14-18 2003

ILASA

N. Marinelli

 $\mathbf{B}_{\mathbf{S}} \rightarrow \mathbf{D}_{\mathbf{S}} \pi \rightarrow \varphi \pi \pi \rightarrow \mathbf{K} \mathbf{K} \ \pi \pi$

Current W.A.: $B_s^0 - \overline{B}_s^0$ mixing: $\Delta M_s \ge 14.4 \text{ ps}^{-1} \otimes 95\%$ CL SM prediction: $14.8 \le \Delta M_s \le 25.9 \text{ ps}^{-1} \otimes 99\%$ CL

<mark>@ L1</mark>:

single μ (P_T > 14 GeV) or low-P_T μ + low-E_T jet (various threshold scenarios possible). The μ also serves for tagging the B_S flavour @ production time

@ HLT: <u>Pixel Primary vertex</u> reconstruction <u>Partial Tracking:</u> Seeds with P_T > 0.7 GeV, 3 Hits (2 pixels + 1SST) & z ± 1 mm from PV <u>Topological cuts:</u> $\Delta R(KK) < 0.3$, $\Delta R(\phi \pi) < 1.2$, $\Delta R(D_s \pi) < 2.0$, $\Delta \phi(B_s, \mu) > 0.6$ Kinematical cuts: $P_T(\phi) > 2GeV$, $P_T(D_s) > 4GeV$, $P_T(B_s) > 5GeV$ <u>Mass reconstruction:</u> $\Delta M_{\phi} < 15MeV$, $\Delta M_{Ds} < 75MeV$, $\Delta M_{Bs} < 270MeV$ HLT efficiency ~ 9%, <t> = 640 msec

$B_S → D_S π → φππ → KK ππ$

of signal evts depends on the L1 B.W. allocated to the channel Assuming 1KHz allocated @ L1 (5Hz @ HLT)

300-400 signal events/year \implies sensitivity to Δm_s up to 20 ps⁻¹ \checkmark 1000 evts needed to cover the whole SM allowed range $\Delta m_s \le 26$ ps⁻¹ (CMS NOTE 2000/038,CMS NOTE 2002/045)

Beauty 2003, Oct 14-18 2003

N. Marinelli

Machine conditions/instantaneous luminosity \square might allow lowering the L1 thresholds below the nominal value

Trigger rates (KHz) vs cuts on the muon P_T and jet E_T

	$P_{T}\mu$	0 GeV	20GeV	30Gev
	4GeV	<mark>0.27</mark> (50)	<mark>0.15</mark> (15)	<mark>0.08</mark> (5.7)
	5GeV	<mark>0.19</mark> (33)	<mark>0.10</mark> (11)	<mark>0.06</mark> (4.2)
LT (Lvl-1)	6GeV	<mark>0.16</mark> (26)	<mark>0.082</mark> (8.5)	<mark>0.055</mark> (3.6)
	7GeV	<mark>0.11</mark> (18)	0.062 (6.2)	<mark>0.045</mark> (2.7)
	10GeV	0.037 (6.4)	0.021 (2.5)	<mark>0.014</mark> (1.3)
	14GeV	0.017 (3.2)	<mark>0.010</mark> (1.3)	0.008 (0.7)

Beauty 2003, Oct 14-18 2003

N. Marinelli

High Level Trigger Table @ Low Luminosity

<u>Trigger type</u>	<u>Threshold</u> (e=90-95%) (GeV)	<u>Indiv.</u> <u>Rate</u> (Hz)	<u>Cum</u> <u>ul.</u> <u>rate</u> (Hz)	 B-Physics is missing Bandwith for B-physics @ LHC
1e, 2e	29, 17	34	34	Start-up will aspend on:
1γ, 2γ	80, (40*25)	9	43	 Lower luminosity larger
1μ, 2μ 1τ, 2τ	86, 59	4	76	bandwith Backaround conditions
Jet * $MissE_T$	180 * 123	5	81	✓ The safety factor of 3 might be
1-jet, 3- jet, 4-jet	657, 247, 113	9	89	pessimistic be lower thresholds,
e * jet	19 * 52	1	90	full R W
Inclusive b-jets	237	5	95	 In addition a possible strategy is to introduce P thissens as the
Calibration/ other		10	105	luminosity drops during the fill (2 drops expected)

Beauty 2003, Oct 14-18 2003

IASA

N. Marinelli

Conclusions

• LHC huge bb statistics will allow first observations (e.g. $B_s \rightarrow \mu^- \mu^+$) and very accurate studies (e.g. determination of $\Delta \Gamma_s$ from $B_s \rightarrow J/\psi \phi$)

Although CMS design is not B-physics specific, it can support a competitive B-physics program

Fast Tracking is a key point in B-decay selection at High Level Triggers as demonstrated for few benchmark channels in the DAQ TDR

LHC operating conditions, especially at start-up are critical: Low luminosity for a while is lots of B physics

The Physics TDR, due in the next few years, will address in more details the CMS B-physics potential, turning the attention from the HLT selection to detailed offline analysis

Backing matching

Beauty 2003, Oct 14-18 2003

Trigger & DAQ architecture

Two level trigger: Lvl-1 and High Level Triggers

Beauty 2003, Oct 14-18 2003

N. Marinelli

IASA-Athens

Lvl-1 Trigger: Muon Stream

Beauty 2003, Oct 14-18 2003