V_{cb}: experimental and theoretical highlights

Marina Artuso Syracuse University

The method

- Ultimate goal: a precise determination of V_{cb}
- The challenge: precise evaluation of the hadronic matrix element

The exclusive approach: HQET & V_{cb}

- Heavy Quark Effective THEORY (HQET) (Isgur & Wise)
 - QCD is flavor independent, so in the limit of infinitely heavy quarks $q_a \rightarrow q_b$ occurs with unit form-factor [F(1)=1] when the quarks are moving with the same invariant 4-*velocity*, w=1.
 - Example: for $B \rightarrow D^* l v$:
 - All form-factors are related to one universal shape that can be measured
 - Corrections to F(1) due to finite quark masses are calculable along with QCD corrections. These corrections are parameterized in a series: $\Sigma_n C_n (1/m_{qi})^n$, n=1, 2...

$V_{cb} \text{ from } B \rightarrow D^* \ell \nu$

• HQET: $\frac{d\Gamma}{dw} = \mathcal{K}(w)\mathcal{F}^{2}(w)|V_{cb}|^{2} \qquad \text{th}$ $\mathcal{F}(w) = \mathcal{F}_{D^{*}}(1)\mathcal{J}(w)$

- The shape,g(w) not a clearly predictable quantity, but is constrained by theoretical bounds and measured form factors
- Experiments can measure $d\Gamma/dw$
- To find V_{cb} measure value of decay rate at w=1 \rightarrow F(1)|V_{cb}|

$F(1)|V_{cb}|$ using $B \rightarrow D^* l v$

- Fit to function shape given by Caprini et al.
- Yields value of F(1) $|V_{cb}|$ & shape, parameterized by ρ^2 .
- $F(1)|V_{cb}| = (36.7 \pm 0.8) \times 10^{-3}$ (HFAG)
- $\square \rho^2 = 1.44 + 0.14$ (HFAG)

Theoretical calculations of F(1)

- $F(1)=\eta_{QED}\eta_{QCD}(1+\delta_{1/m^2}+...)$
 - Lukes theorem: no $\delta_{1/m}$ corrections (would be in D (v)
 - \Box $\eta_{\text{QED}} = 1.007,$ $\eta_{\text{QCD}} = 0.960 \pm 0.007$ at two loops
 - $\Box \delta_{1/m^2}$ involves $1/m_{b^2}$, $1/m_{c^2}$, $1/m_c m_b$
- First Lattice Gauge calculations (quenched-no light quark loops) 0.913^{+0.024+0.017}_{-0.017-0.030} ultimate solution
- PDG (Artuso & Barberio) F(1)=0.91±0.05

 V_{cb}^{excl} = (40.03±0.9_{exp} ±1.8_{th})x10⁻³

Another exclusive channel: $B \rightarrow D \ell v$

- Renewed interest on this channel:
 - Lattice calculations
 - QCD sum rules evaluation of G(1)
- Using G(1)=1.058 ±0.07 (Artuso-Barberio PDG2002)

$$V_{cb}$$
=(39.8 ±3.5_{exp} ±2.9_{th})x10⁻³

 $|V_{cb}|$ from inclusive $B \rightarrow X_c \ell v$

- From $\mathcal{B}(B \to X_c l \nu)$ extract the experimental decay width: $\Gamma_{sl}^c \equiv \frac{B(b \to X_c l \nu)}{\tau_b}$
- Compare with the theoretical prediction from Operator Product Expansion:

$$\Gamma_{sl}^{c} = \frac{G_{F}^{2} m_{b}^{5} |V_{cb}|^{2}}{192\pi^{3}} \left[z_{0} \left(1 - \frac{\mu_{\pi}^{2} - \mu_{G}^{2}}{2m_{b}^{2}} \right) - 2 \left(1 - \frac{m_{c}^{2}}{m_{b}^{2}} \right) \frac{\mu_{G}^{2}}{m_{b}^{2}} - \frac{2\alpha_{s}}{3\pi} z_{0}^{(1)} + \dots \right]$$
Known phase space
factors

The Heavy Quark Expansion

- Theoretical framework: Heavy Quark Expansion:
 - Inclusive properties expressed as asymptotic expansion in terms of the "energy release" m_b-m_c
 - Underlying theoretical accuracy: are all the uncertainties quantified? In particular ansatz of quark-hadron duality.
 - Experimental determination of the Heavy quark expansion parameters, in particular:
 - \cdot m_b,m_c at the relevant mass scale
 - μ_{π}^2 [λ_1] kinetic energy of the b quark
 - μ_G^2 [λ_2] expectation value of chromomagnetic op.

m_b: a multifaceted fundamental parameter

Important for $V_{c(u)b}$

		m _{kin} (GeV)	$\overline{\mathbf{m}}_{\mathbf{b}}(\overline{\mathbf{m}}_{\mathbf{b}})$ (GeV)	method
Beneke,Signer, Smirnov		-	4.26±0.12	Sum rules
Melnikov		4.56±0.06	4.20±0.1	Sum rules
Hoang		4.57±0.06	4.25±0.09	Sum rules
Jamin,Pich		-	4.19±0.06	Sum rules, no resummation
Pineda, Yndurain		-	$4.44_{+0.03}^{-0.04}$	Q(1S) mass
NRQCD		-	4.28±0.03±0.03±0.10	Lattice HQET (n _f =2)
Y expansion		Jet observables sensitive to b ma		

+ pole mass $m_b^{pole} \approx m_{kin} + 0.255 \text{ GeV}$ Bigi-Mannel hep/ph/0212021

Problems with HQE

- Terms in 1/m_b³ are multiplied by unknown functions; hard to evaluate error due to these higher order terms
- Duality is assumed: integrated over enough phase space the exclusive charm bound states & the inclusive hadronic result will match at quark-level. But no way to evaluate the error...
- Appears to miss Λ_b lifetime by 10±5% & b-baryon by 18 ±3%; however semileptonic decay may be easier
- Need experimental tests to evaluate errors
 - Sharpen our knowledge of B meson semileptonic decays with high $M_{\rm x}$ hadronic states
 - Perhaps use V_{cb} as a test?

How to Measure λ_1 & $\overline{\Lambda}$

- Can determine λ_1 and $\overline{\Lambda}$, and thus V_{cb} by measuring "moments" in semileptonic decays
 - Hadronic mass moments (ex: $\langle M_X^2 M_D^2 \rangle$, M_D is spin-averaged D, D* mass) where $B \rightarrow X \ell v$
 - Semileptonic moments
- Can also use $b \rightarrow s\gamma$ decays, here we use the 1st moment of the photon energy

- $b \rightarrow s\gamma$ moment determination shown later
- Fitting this & other data Bauer, Ligeti, Luke Manohar find V_{cb}=(40.8±0.9)×10⁻³ & m_b=4.74±0.10 GeV (hep-ph/0210027)

BaBar Moments Result

- Using only BaBar hadronic moments & B_{sl}:
- V_{cb}=(42.1±1.0±0.7)x10⁻³ again within ±7% of D* ℓ_V
- m_b^{1S} =4.64±0.09±0.09 GeV
- $(M_x^2 \text{ as function of lepton} \text{ momentum, is now consistent} with theory)$

Doesn't include $1/m_b^3$ effors

Comparison of Hadron & Lepton Moments (BaBar)

- Lepton & Hadron moments differ somewhat. Does this indicate a Duality violation?
- Difference of 0.2 GeV in m_b leads to 20% difference in V_{ub}

New versus old CLEO & BaBar Moments

Refined experimental results agree with theory.

Can we draw any definitive conclusion?

DELPHI NO E_{lep} cut $M_{x}^{2} = 0.534 \pm 0.041 \pm 0.074$

Summary of experimental results

•
$$V_{cb}^{excl}$$
 = (40.03±0.9_{exp} ±1.8_{th})×10⁻³

• $V_{cb}^{incl} = (41.5 \pm 0.4_{\Gamma_{sl}} \pm 0.4_{\lambda 1 \overline{\Lambda} \text{ meas}} \pm 0.9_{th}) \times 10^{-3}$ **A** measure of the consistency between theoretical approaches

 Precise form factor calculations from lattice gauge calculation

•More extensive exploration of inclusive semileptonic decay observables: in particular high M_x component

•More detailed evaluation & validation of theoretical errors