V_{cb}: experimental and theoretical highlights

Marina Artuso
Syracuse University
The method

- Ultimate goal: a precise determination of V_{cb}
- The challenge: precise evaluation of the hadronic matrix element
The exclusive approach: HQET & V_{cb}

- **Heavy Quark Effective THEORY (HQET) (Isgur & Wise)**
 - QCD is flavor independent, so in the limit of infinitely heavy quarks $q_a \to q_b$ occurs with unit form-factor $[F(1)=1]$ when the quarks are moving with the same invariant 4-velocity, $w=1$.
 - **Example:** for $B \to D^* \ell \nu$:
 - All form-factors are related to one universal shape that can be measured
 - Corrections to F(1) due to finite quark masses are calculable along with QCD corrections. These corrections are parameterized in a series: $\sum_n C_n (1/m_{q_i})^n$, $n=1, 2...$
\(V_{cb} \) from \(B \rightarrow D^* \ell \nu \\

- **HQET:**
 \[
 \frac{d\Gamma}{dw} = K(w)F^2(w)|V_{cb}|^2
 \]
 \[
 F(w) = F_{D^*}(1)g(w)
 \]

- The shape, \(g(w) \) not a clearly predictable quantity, but is constrained by theoretical bounds and measured form factors
- Experiments can measure \(d\Gamma/dw \)
- To find \(V_{cb} \) measure value of decay rate at \(w=1 \rightarrow F(1)|V_{cb}| \)
$F(1)|V_{cb}|$ using $B \to D^{*}\ell\nu$

- Fit to function shape given by Caprini et al.
- Yields value of $F(1)|V_{cb}|$ & shape, parameterized by ρ^2.
- $F(1)|V_{cb}| = (36.7 \pm 0.8) \times 10^{-3}$ (HFAG)
- $\rho^2 = 1.44 \pm 0.14$ (HFAG)
Theoretical calculations of F(1)

• $F(1) = \eta_{\text{QED}} \cdot \eta_{\text{QCD}} \left(1 + \delta_{1/m^2} + \ldots\right)$
 - Lukes theorem: no $\delta_{1/m}$ corrections (would be in $D(\nu)$)
 - $\eta_{\text{QED}} = 1.007$, $\eta_{\text{QCD}} = 0.960 \pm 0.007$ at two loops
 - δ_{1/m^2} involves $1/m_b^2$, $1/m_c^2$, $1/m_c m_b$

• First Lattice Gauge calculations (quenched-no light quark loops) $0.913^{+0.024+0.017}_{-0.017-0.030}$
 ultimate solution

• PDG (Artuso & Barberio) $F(1) = 0.91 \pm 0.05$
V_{cb} Exclusive Averages

\[
V_{cb}\text{ excl} = (40.03 \pm 0.9_{\text{exp}} \pm 1.8_{\text{th}}) \times 10^{-3}
\]
Another exclusive channel: $B \to D\ell\nu$

- Renewed interest on this channel:
 - Lattice calculations
 - QCD sum rules evaluation of $G(1)$
- Using $G(1) = 1.058 \pm 0.07$ (Artuso-Barberio PDG2002)

$V_{cb} = (39.8 \pm 3.5_{\text{exp}} \pm 2.9_{\text{th}}) \times 10^{-3}$
\[|V_{cb}| \text{ from inclusive } B \rightarrow X_c \ell \nu \]

- From \(B(B \rightarrow X_c \ell \nu) \) extract the experimental decay width:
 \[\Gamma_{sl}^c \equiv \frac{B(b \rightarrow X_c l\nu)}{\tau_b} \]

- Compare with the theoretical prediction from Operator Product Expansion:
 \[
 \Gamma_{sl}^c = \frac{G_F^2 m_b^5 |V_{cb}|^2}{192\pi^3} \left[z_0 \left(1 - \frac{\mu_{\pi}^2 - \mu_G^2}{2m_b^2} \right) - 2 \left(1 - \frac{m_c^2}{m_b^2} \right) \frac{\mu_G^2}{m_b^2} - \frac{2\alpha_s}{3\pi} z_0^{(1)} + \ldots \right]
 \]

Known phase space factors
The Heavy Quark Expansion

- Theoretical framework: Heavy Quark Expansion:
 - Inclusive properties expressed as asymptotic expansion in terms of the “energy release” m_b-m_c
 - Underlying theoretical accuracy: are all the uncertainties quantified? In particular ansatz of quark-hadron duality.
 - Experimental determination of the Heavy quark expansion parameters, in particular:
 - m_b, m_c at the relevant mass scale
 - $\mu_\pi^2 [\lambda_1]$ kinetic energy of the b quark
 - $\mu_G^2 [\lambda_2]$ expectation value of chromomagnetic op.
m_b: a multifaceted fundamental parameter

<table>
<thead>
<tr>
<th>Method</th>
<th>(m_{\text{kin}}) (GeV)</th>
<th>(\overline{m}_b(\overline{m}_b)) (GeV)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beneke, Signer, Smirnov</td>
<td>-</td>
<td>4.26±0.12</td>
<td>Sum rules</td>
</tr>
<tr>
<td>Melnikov</td>
<td>4.56±0.06</td>
<td>4.20±0.1</td>
<td>Sum rules</td>
</tr>
<tr>
<td>Hoang</td>
<td>4.57±0.06</td>
<td>4.25±0.09</td>
<td>Sum rules</td>
</tr>
<tr>
<td>Jamin, Pich</td>
<td>-</td>
<td>4.19±0.06</td>
<td>Sum rules, no resummation</td>
</tr>
<tr>
<td>Pineda, Yndurain</td>
<td>-</td>
<td>4.44±0.04</td>
<td>Q(1S) mass</td>
</tr>
<tr>
<td>NRQCD</td>
<td>-</td>
<td>4.28±0.03±0.03±0.10</td>
<td>Lattice HQET ((n_f=2))</td>
</tr>
</tbody>
</table>

Important for \(V_{c(u)b} \)

Y expansion

Jet observables sensitive to \(b \) mass (LEP)

\(+\) pole mass \(m_{b,\text{pole}} \approx m_{\text{kin}} +0.255 \) GeV Bigi-Mannel hep/ph/0212021
Problems with HQE

- Terms in $1/m_b^3$ are multiplied by unknown functions; hard to evaluate error due to these higher order terms
- Duality is assumed: integrated over enough phase space the exclusive charm bound states & the inclusive hadronic result will match at quark-level. But no way to evaluate the error...
- Appears to miss Λ_b lifetime by $10\pm5\%$ & b-baryon by $18\pm3\%$; however semileptonic decay may be easier
- Need experimental tests to evaluate errors
 - Sharpen our knowledge of B meson semileptonic decays with high M_x hadronic states
 - Perhaps use V_{cb} as a test?
 - ...
How to Measure λ_1 & $\overline{\Lambda}$

- Can determine λ_1 and $\overline{\Lambda}$, and thus V_{cb} by measuring “moments” in semileptonic decays
 - Hadronic mass moments (ex: $\langle M_X^2 - M_D^2 \rangle$, M_D is spin-averaged D, D^* mass) where $B \rightarrow X \ell \nu$
 - Semileptonic moments

- Can also use $b \rightarrow s \gamma$ decays, here we use the 1st moment of the photon energy
• Hadronic Mass & Lepton Energy moments found in semileptonic decays “detecting the neutrino” using missing energy
• $b \rightarrow s \gamma$ moment determination shown later
• Fitting this & other data Bauer, Ligeti, Luke Manohar find $V_{cb}=(40.8 \pm 0.9) \times 10^{-3}$ & $m_b=4.74 \pm 0.10$ GeV (hep-ph/0210027)

\[\Lambda=0.35 \pm 0.07 \text{ GeV} \]
\[\lambda_1 = -0.24 \pm 0.07 \text{ GeV}^2 \]
exp errors only
BaBar Moments Result

- Using only BaBar hadronic moments & B_s:
- $V_{cb} = (42.1 \pm 1.0 \pm 0.7) \times 10^{-3}$ again within $\pm 7\%$ of $D^* \ell \nu$
- $m_b^{1S} = 4.64 \pm 0.09 \pm 0.09$ GeV
- $(M_x^2$ as function of lepton momentum, is now consistent with theory)
Comparison of Hadron & Lepton Moments (BaBar)

- Lepton & Hadron moments differ somewhat. Does this indicate a Duality violation?
- Difference of 0.2 GeV in m_b leads to 20% difference in V_{ub}
Refined experimental results agree with theory.

Can we draw any definitive conclusion?

\[M_X^2 = 0.534 \pm 0.041 \pm 0.074 \]
Summary of experimental results

• $V_{cb}^{\text{excl}} = (40.03 \pm 0.9_{\text{exp}} \pm 1.8_{\text{th}}) \times 10^{-3}$

• $V_{cb}^{\text{incl}} = (41.5 \pm 0.4_{\text{Is}} \pm 0.4_{\lambda} \pm 0.4_{\Lambda_{\text{meas}}} \pm 0.9_{\text{th}}) \times 10^{-3}$

Future prospects:

• Precise form factor calculations from lattice gauge calculation

• More extensive exploration of inclusive semileptonic decay observables: in particular high M_x component

• More detailed evaluation & validation of theoretical errors