$V_{c b}$: experimental and theoretical highlights

Marina Artuso

Syracuse University

The method

- Ultimate goal: a precise determination of $V_{c b}$
- The challenge: precise evaluation of the hadronic matrix element

The exclusive approach: HQET \& V_{cb}

- Heavy Quark Effective THEORY (HQET) (Isgur \& Wise)
- QCD is flavor independent, so in the limit of infinitely heavy quarks $q_{a} \rightarrow q_{b}$ occurs with unit form-factor $[F(1)=1]$ when the quarks are moving with the same invariant 4-velocity, w=1.
- Example: for $B \rightarrow D^{*}[v:$
- All form-factors are related to one universal shape that can be measured
- Corrections to $F(1)$ due to finite quark masses are calculable along with QCD corrections. These corrections are parameterized in a series: $\Sigma_{n} C_{n}\left(1 / m_{q i}\right)^{n}, n=1,2 \ldots$

$V_{c b}$ from $B \rightarrow D^{*} \subset v$

- HQET:

$$
\begin{aligned}
& \frac{d \Gamma}{d w}=\mathcal{K}(w) \mathcal{F}^{2}(w)\left|V_{c b}\right|^{2} \\
& \mathcal{F}(w)=\mathcal{F}_{D^{*}}(1) \mathscr{G}(w)
\end{aligned}
$$

- The shape, $g(w)$ not a clearly predictable quantity, but is constrained by theoretical bounds and measured form factors
- Experiments can measure $\mathrm{d} \Gamma / \mathrm{d} w$
- To find V_{cb} measure value of decay rate at $w=1 \rightarrow F(1)\left|V_{c b}\right|$

$F(1)\left|V_{c b}\right|$ using $B \rightarrow D^{*}[v$

- Fit to function shape given by Caprini et al.
- Yields value of $F(1)\left|V_{c b}\right| \&$ shape, parameterized by ρ^{2}.
- $F(1)\left|V_{c b}\right|=(36.7 \pm 0.8) \times 10^{-3} \quad$ (HFAG)
$\square \rho^{2}=1.44+/-0.14 \quad$ (HFAG)

Theoretical calculations of $F(1)$

- $F(1)=\eta_{Q E D} \eta_{Q C D}\left(1+\delta_{1 / \mathrm{m}^{2+}} ..\right)$
- Lukes theorem: no $\delta_{1 / m}$ corrections (would be in $D(v)$
$\square \eta_{\mathrm{QED}}=1.007, \eta_{\mathrm{QCD}}=0.960 \pm 0.007$ at two loops
$\square \delta_{1 / m^{2}}$ involves $1 / m_{b^{2}}, 1 / m_{c^{2}}, 1 / m_{c} m_{b}$
- First Lattice Gauge calculations (quenched-no light quark loops) $0.913_{-0.017-0.030}^{+0.024+0.017}$ ultimate solution
- PDG (Artuso \& Barberio) $F(1)=0.91 \pm 0.05$

$V_{c b}$ Exclusive Averages

$$
V_{c b}^{\text {excl }}=\left(40.03 \pm 0.9_{\exp } \pm 1.8_{t h}\right) \times 10^{-3}
$$

Another exclusive channel: $B \rightarrow D / v$

- Renewed interest on this channel:
- Lattice calculations
- QCD sum rules evaluation of $G(1)$
- Using $G(1)=1.058 \pm 0.07$ (Artuso-Barberio PDG2002)
$V_{c b}=\left(39.8 \pm 3.5_{\text {exp }} \pm 2.9_{\text {th }}\right) \times 10^{-3}$

$\left|V_{c b}\right|$ from inclusive $B \rightarrow X_{c} \subset v$

- From $\mathcal{B}\left(B \rightarrow X_{c} \mathcal{L}\right)$ extract the experimental decay width: $\quad \Gamma_{s l}^{c} \equiv \frac{\mathrm{~B}\left(b \rightarrow X_{c} l v\right)}{\tau_{b}}$
- Compare with the theoretical prediction from Operator Product Expansion:

The Heavy Quark Expansion

- Theoretical framework: Heavy Quark Expansion:
- Inclusive properties expressed as asymptotic expansion in terms of the "energy release" $m_{b}-m_{c}$
- Underlying theoretical accuracy: are all the uncertainties quantified? In particular ansatz of quark-hadron duality.
- Experimental determination of the Heavy quark expansion parameters, in particular:
- m_{b}, m_{c} at the relevant mass scale
- $\mu_{\pi}^{2} \quad\left[\lambda_{1}\right]$ kinetic energy of the b quark
- $\mu_{G}^{2} \quad\left[\lambda_{2}\right]$ expectation value of chromomagnetic op.

m_{b} : a multifaceted fundamental parameter

Important for $\mathrm{V}_{\mathrm{c}(\mathrm{u}) \mathrm{b}}$

	$\mathrm{m}_{\text {kin }}(\mathrm{GeV})$	$\begin{array}{\|l} \overline{\mathbf{m}}_{\mathbf{b}}\left(\overline{\mathbf{m}}_{\mathbf{b}}\right) \\ (\mathrm{GeV}) \\ \hline \end{array}$	method
Beneke,Signer, Smirnov	-	4.26 ± 0.12	Sum rules
Melnikov	4.56 ± 0.06	4.20 ± 0.1	Sum rules
Hoang	4.57 ± 0.06	4.25 ± 0.09	Sum rules
Jamin,Pich	-	4.19 ± 0.06	Sum rules, no resummation
Pineda,Yndurain	-	$4.44{ }_{+0.03}^{-0.04}$	O(1S) mass
NRQCD	$\underbrace{-}$	$4.2 \underbrace{8 \pm 0.03} \pm 0.03 \pm 0.10$	$\begin{aligned} & \text { Lattice HQET } \\ & \left(\mathrm{n}_{\mathrm{f}}=2\right) \end{aligned}$
Y expansion		Jet observables sensitive to b mass(LEP)	

+ pole mass $\mathrm{m}_{\mathrm{b}}{ }^{\text {pole }} \approx \mathrm{m}_{\text {kin }}+0.255 \mathrm{GeV}$ Bigi-Mannel hep/ph/0212021

Problems with HQE

- Terms in $1 / m_{b}{ }^{3}$ are multiplied by unknown functions; hard to evaluate error due to these higher order terms
- Duality is assumed: integrated over enough phase space the exclusive charm bound states \& the inclusive hadronic result will match at quark-level. But no way to evaluate the error...
- Appears to miss Λ_{b} lifetime by $10 \pm 5 \%$ \& b-baryon by $18 \pm 3 \%$; however semileptonic decay may be easier
- Need experimental tests to evaluate errors
- Sharpen our knowledge of B meson semileptonic decays with high M_{x} hadronic states
- Perhaps use $V_{c b}$ as a test?

How to Measure $\lambda_{1} \& \bar{\Lambda}$

- Can determine λ_{1} and $\bar{\Lambda}$, and thus $V_{c b}$ by measuring "moments" in semileptonic decays
- Hadronic mass moments (ex: $\left\langle M_{x}{ }^{2}-M_{D}{ }^{2}\right\rangle, M_{D}$ is spin-averaged D, D^{*} mass) where $B \rightarrow X(v$
- Semileptonic moments
- Can also use $b \rightarrow s \gamma$ decays, here we use the $1^{1 \text { st }}$ moment of the photon energy

Moments (CLEO)
 $$
\begin{aligned} & \Lambda=0.35 \pm 0.07 \mathrm{GeV} \\ & \lambda_{1}=-0.24 \pm 0.07 \mathrm{GeV}^{2} \\ & \text { exp errors only } \end{aligned}
$$

- Hadronic Mass \& Lepton Energy moments found in semileptonic decays "detecting the neutrino" using missing energy
- $b \rightarrow s \gamma$ moment determination shown later
- Fitting this \& other data Bauer, Ligeti, Luke Manohar find
$V_{c b}=(40.8 \pm 0.9) \times 10^{-3}$ \&
$m_{b}=4.74 \pm 0.10 \mathrm{GeV}$
(hep-ph/0210027)

BaBar Moments Result

- Using only BaBar hadronic moments \& $\mathrm{B}_{\mathrm{s} 1}$:
- $\mathrm{V}_{\mathrm{cb}}=(42.1 \pm 1.0 \pm 0.7) \times 10^{-3}$ again within $\pm 7 \%$ of $D^{*}[v$
- $m_{b}{ }^{15}=4.64 \pm 0.09 \pm 0.09 \mathrm{GeV}$
- $\left(M_{x}{ }^{2}\right.$ as function of lepton momentum, is now consistent with theory)

$$
\begin{aligned}
\bar{\Lambda}^{\overline{M S}} & =0.53 \pm 0.09_{\exp } \mathrm{GeV} \\
\lambda_{1}^{\overline{M S}} & =-0.36 \pm 0.09_{\exp } \mathrm{GeV}^{2}
\end{aligned}
$$

Doesn't include $1 / \mathrm{m}_{\mathrm{b}}{ }^{3}$ etrors

Comparison of Hadron \& Lepton Moments (BaBar)

- Lepton \& Hadron moments differ somewhat. Does this indicate a Duality violation?
- Difference of 0.2 GeV in m_{b} leads to 20\% difference in V_{ub}

New versus old CLEO \& BaBar Moments

Refined experimental results agree with theory.

Can we draw any definitive conclusion?

Summary of experimental results

- $V_{c b}^{\text {excl }}=\left(40.03 \pm 0.9_{\text {exp }} \pm 1.8_{\mathrm{th}}\right) \times 10^{-3}$
- $V_{c b}^{\mathrm{incl}}=\left(41.5 \pm 0.4_{\Gamma_{\mathrm{sl}}} \pm 0.4_{\lambda 1 \bar{\Lambda} \text { meas }} \pm 0.9_{\text {th }}\right) \times 10-3$

A measure of the consistency between theoretical approaches

- Precise form factor calculations from lattice gauge calculation
- More extensive exploration of inclusive semileptonic decay observables: in particular high M_{x} component
- More detailed evaluation \& validation of theoretical errors

