Online Event Selection at the CMS experiment

on behalf of the CMS Collaboration

Outline:

- CMS trigger and DAQ Architecture
- Level-1 Trigger
- HLT principles
- HLT performance
- Summary

HLT = High-Level Trigger

"Level-1 TDR" - CERN/LHCC 2000-038 *"DAQ & HLT TDR"* - CERN/LHCC 2002-26

next: $Physics \ TDR$

M. Konecki

M. Konecki

BEAUTY 2003, Carnegie Mellon University, Pittsburgh, October 14-18, 2003

CMS at LHC

LHC

- 7+7 TeV protons
- bunch crossing rate: 40MHz
- High Luminosity: 10³⁴cm⁻²s⁻¹
 Low Luminosity: 2 · 10³³cm⁻²s⁻¹

CMS: General purpose experiment

- 2 trigger levels
 - Max Level-1 output: 100kHz
 - High-Level Trigger output: O(100 Hz)
- Event selection 1 in $10^{\sim 13}$

CMS trigger principles

CMS Approach: do without dedicated L2 hardware. After Level-1 there is a High-Level Trigger running on a single processor farm. Advantage: The only limitation is available CPU. Maximal Flexibility. Full granularity and resolution.

Caveats: A lot of data to handle. Challenging.

Detectors Digitizers

Front end pipelines

Readout buffers

Switching networks

Processor farms

- DAQ designed to accept Level-1 rate of 100 kHz
- Modular DAQ: 8 × 12.5 kHz DAQ units.
 4 Slices at startup (50 kHz).
- HLT output $O(10^2)$ Hz rejection of 1000.

Requirements driven by LHC discovery physics:

- Identify high-p_T leptons (including taus) and photons. Single and Combined triggers.
- All trigger thresholds and conditions must be programmable (large uncertainties in backgrounds and signals)
- Need to include overlapping and min-bias triggers to well understand efficiencies
- Large rejections factors needed: 40MHz (× $\sim 20 \text{ ev/bx}$) \rightarrow 100 kHz.
- Level-1 uses muon and calorimeter detector data only
- Special-purpose hardware (ASICS) but also FPGAs
- Data stored on detector during fixed Level-1 latency. $128BX = 3.2\mu s$
- Data read on Level-1 accept. Proceed via event builder switch to HLT

M. Konecki

Jet and Tau

Trigger region: 4×4 towers. Sliding window: 3×3 regions. Central has maximal E_T . Jet E_T summed in sliding window.

- Tau jet identified by τ -pattern shape.
- Various combinations of thresholds possible
- Cuts on jet multiplicities
- Also: Missing E_T , ΣE_T , ΣE_T , ΣE_T , ΣE_T

High rates or high cuts.

M. Konecki

L1 Trigger

M. Konecki

BEAUTY 2003, Carnegie Mellon University, Pittsburgh, October 14-18, 2003

- 8 -

Muon

Three systems are complementary:

- gain in efficiency.
- gain in rate.

GMT selection based on candidate p_T and quality.

BEAUTY 2003, Carnegie Mellon University, Pittsburgh, October 14-18, 2003

L1 trigger table $(2 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1})$

Safety factor of three is superimposed for simulation uncertainties, beam conditions,... Thus output rate: $50 \text{ kHz} \implies 16 \text{ kHz}$ at startup $(2 \cdot 10^{33} \text{ cm}^{-2} \text{s}^{-1})$. Bandwidth is allocated in equal parts to electron/photons, muons, taus, and jet+combined triggers. Priority: discovery physics.

Trigger	Threshold	Indiv.	Cumul rate
	(ε=90-95%) (GeV)	Rate (kHz)	(kHz)
1e/γ, 2e/γ	29, 17	4.3	4.3
1μ, 2μ	14, 3	3.6	7.9
1τ, 2τ	86, 59	3.2	10.9
1-jet	177	1.0	11.4
3-jets, 4-jets	86, 70	2.0	12.5
Jet * Miss-E _T	88 * 46	2.3	14.3
e * jet	21 * 45	0.8	15.1
Min-bias		0.9	16.0

- 10 -

M. Konecki

HLT

- Runs on CPU farm (1 ev/processor at a time). Available CPU is a limitation (\rightarrow timing). Uses full granularity and resolution. C++.
- Must provide sufficient rate reduction 100(50) kHz \implies O(10²) Hz. Selection 1 ev in ~1000.
- Must satisfy physics requirements: inclusive selection, high efficiency.
- Must not required precise knowledge of calibration/run conditions.
- Two strategies:
 - $-\ensuremath{\mathsf{Fast}}$ but not accurate reconstruction
 - $\mbox{ Use minimal amount of precise information.}$

Both ways used to optimize event rejection speed. Second is preferred. Code as close as possible to offline reconstruction.

- Reconstruction on demand: do not reconstruct until necessary
- Regional reconstruction (\rightarrow)
- Partial and conditional track reconstruction (\rightarrow) .

HLT principles

Global and Regional reconstruction

GLOBAL: Reconstruct raw data detector by detector, link detectors to make objects. Needed when no seed given. Also: global tracking, ΣE_T , Missing E_T , "other side of lepton"

REGIONAL: Reconstruct data only where it is needed. Slices of appropriate size. Need to know where to start reconstruction (seeds from Level-1, Level-2).

example: Track in the region of interest defined by a jet. Typical cone size: $\Delta R = 0.2 - 0.5$

M. Konecki

HLT principles

- Stop tracking when combinatorics is solved and/or precision is sufficient for analysis.
- Stop track reconstruction if track does not match kinematics requirements.

Pixel seeding Pixel seeding Time Ursee Algorithm For track reconstruction increases linearly with number of hits.

M. Konecki

HLT performance

Muons – reconstruction

- L2: Reconstruction in Muon System Only
 - Regional reconstruction seeded by Level-1 muon,
 - Kalman Filter Fit collecting DT/CSC/RPC segments/hits; GEANE is used for propagation through CMS,

 $-\operatorname{\mathsf{Add}}\nolimits$ beam spot constraint to the fit.

• L3: Inclusion of Tracker Data

- Define a region of interest around L2 muon,
- Find seeds compatible with L2 kinematic requirements; Seeds are formed by pairs of pixel hits,
- Kalman Filter Fit in the tracker,
- Update trajectory with hits from Muon Detector.

Muons – Isolation

A tool to reject muons from K, π, b, c decays which are often a background for discovery physics. Isolation is based on the ΣE_T or Σp_T in a cone around the muon.

• Calorimeter Isolation

 E_T in calorimeter towers. Can be applied already at L2. Sensitive to pile-up

• Tracker Isolation Σp_T of tracks around L3 muon. Tracks from simplified Pixel Detector based reconstruction or Full Tracker reconstruction (regional and conditional)

M. Konecki

HLT performance

Rate [Hz] $2 \cdot 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ generator Muons – rates L 1 L 2 L2 calorimeter isolation L 3 (no isolation) L3 + isolation (all algorithms 10 • L1, L2 rate (almost) saturates at very high p_T s, 10 • sharp L3 cut and steep rate curves. 10 (a) 20_ſ Di-muon p_T threshold [GeV/c] (a) 1 *AAAA 18 10 20 30 40 50 60 20 Hz p_{τ}^{μ} threshold [GeV/c] 30 Hz 16 p_T thresholds at 30 GeV 40 Hz Efficiency 12 60 Hz 0.7 10 0 0. 50 60 70 Pt [GeV/c] 80 Hz L1 L2 L3 $2 \cdot 10^{33} \text{cm}^{-2} \text{s}$ 2 14 15 16 17 18 19 20 21 22 23 24 Single muon p_T threshold [GeV/c]

BEAUTY 2003, Carnegie Mellon University, Pittsburgh, October 14-18, 2003

Electrons and Photons

- L2: Reconstruct clusters (full granularity) to match Level-1 candidates. Bremsstrahlung recovery with "super clustering" ($\sim 1X_0$ in Tracker).
- L2.5: confirm electrons with pixel detector hits. Reject $\pi^0 \rightarrow 2\gamma$ background (high E_T cut for photons).
- L3: Electrons: Track reconstruction, E/p, η-matching; Photons: Threshold cut, Isolation.

HLT performance

Jets and MET

- Jet reconstruction with iterative cone algorithm
- E_T miss reconstruction: vector sum of towers above thresholds

Taus

- L2: Narrow jet surrounded by isolation region.
- L2.5/L3: Pixel reconstruction or Full Tracker reconstruction. Check for leading track in the calorimeter defined matching cone. No tracks in bigger isolation cone.

b-tagging

- algorithm(s) rely on large value of the b-hadron proper time (large impact parameter comparing to tracks from u,d jets),
- tracking region defined by calorimeter jet,
- regional and conditional tracking,
- HLT performance close to offline.

M. Konecki

HLT performance

- 19 -

Pixel detector allows for standalone global (or regional) track reconstruction with good space accuracy. Input to PV finding algorithms.

Pseudorapidity

	High Lumi		Low Lumi	
Event Type	Closest PV Eff	Tagged PV Eff	Closest PV Eff	Tagged PV Eff
$q\bar{q} E_T^{\text{Jet}} = 100 \text{ GeV}$	0.99	0.97	0.98	0.97
$b\bar{b} E_T^{\text{Jet}} = 100 \text{ GeV}$	0.99	0.90	1.00	0.96
$\operatorname{QCD} \hat{p}_T = 120 \div 170 \ \mathrm{GeV}/c$	1.00	0.97	1.00	0.96
$\text{QCD } \hat{p}_T = 50 \div 80 \text{ GeV}/c$	0.97	0.80	0.98	0.92
${ m B_s} ightarrow \mu \mu$	0.97	0.50	0.96	0.71
$\rm h \rightarrow ZZ \; m_{h} = 130 \; GeV/c^{2}$	0.98	0.95	0.99	0.98
$h \rightarrow WW m_h = 140 \text{ GeV}/c^2$	0.99	0.85	0.97	0.94
$\mathrm{h} \rightarrow \gamma\gamma ~\mathrm{m_{h}} = 115~\mathrm{GeV}/c^{2}$	0.96	0.52	0.94	0.75
Constant 2617.				7.

M. Konecki

HLT trigger table - rates $(2 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1})$			
Trigger	Threshold	Indiv.	Cumul rate
	(ε=90-95%) (GeV)	Rate (Hz)	(Hz)
1e, 2e	29, 17	34	34
1γ, 2γ	80, (40*25)	9	43
1μ, 2μ	19, 7	29	72
1τ, 2τ	86, 59	4	76
Jet * Miss-E _T	180 * 123	5	81
1-jet, 3-jet, 4-jet	657, 247, 113	9	89
e * jet	19 * 52	1	90
Inclusive b-jets	237	5	95
Calibration/other		10	105

HLT trigger table - efficiencies $(2 \cdot 10^{33} \text{ cm}^{-2} \text{ s}^{-1})$

efficiencies to example signals:

channel	$E\!f\!f\!iciency$ (fiducial obj.)
$H(115 \text{GeV}) \rightarrow \gamma \gamma$	77%
$H(160 \text{GeV}) \rightarrow \text{WW}^* \rightarrow 2\mu$	92%
$H(150 \text{GeV}) \rightarrow \text{ZZ} \rightarrow 4\mu$	98%
$A/H(200 {\rm GeV}) {\rightarrow} 2\tau$	45%
SUSY (~ 0.5 TeV sparticles)	\sim 60%
with R_P - violation	$\sim 20\%$
$W {\rightarrow} e \nu$	42%
$W {\rightarrow} \mu \nu$	69%
$t {\rightarrow} \mu X$	72%

Timing Performance $(2 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1})$

Numbers for a 1 GHz Pentium III (DAQ TDR, December 2002).

Trigger	CPU (ms)	Rate (kHz)	Total (s)
1e/γ, 2e/γ	160	4.3	688
1μ, 2μ	710	3.6	2556
1τ, 2τ	130	3.0	390
Jets, Jet * Miss- E_{T}	50	3.4	170
e * jet	165	0.8	132
B-jets	300	0.5	150

note: uncertainties, expected improvements, raw data checking and formatting not counted, does safety factor 3 requires same CPU?,....

note: CPU dominated by GEANE propagations – now under replacement.

Weighted average for all trigger streams $\simeq 300 \text{ ms/L1}$ event (2002). Moore's law: 2xCPU each 1.5 years $\rightarrow \simeq 40 \text{ms/L1}$ event in 2007. 40 ms/ev \times 50 kHz = 2000 processors \rightarrow filter farm of \sim 1000 dual CPU boxes.

M. Konecki

Is there a place for B-physics?

Some Standard Model physics not included in standard HLT selection (example B-physics). However we want to do it at low luminosity and during luminosity drops through fill. B-physics dedicated algorithms at HLT are high efficient with low CPU cost. B-physics limitations due to Level-1 trigger. \implies talk by Nancy Marinelli. There is a room for B-physics.

- Event selection at LHC is challenging,
- CMS trigger with only two physics layers,
 Level-1: partially programmable hardware,
 HLT: great flexibility at processor farm.
- High-Level Trigger selection of 1:1000 is possible at single processor farm.
- The CMS High-Level Trigger selection optimized for discovery physics,
- There is a room for exclusive *B*-physics.