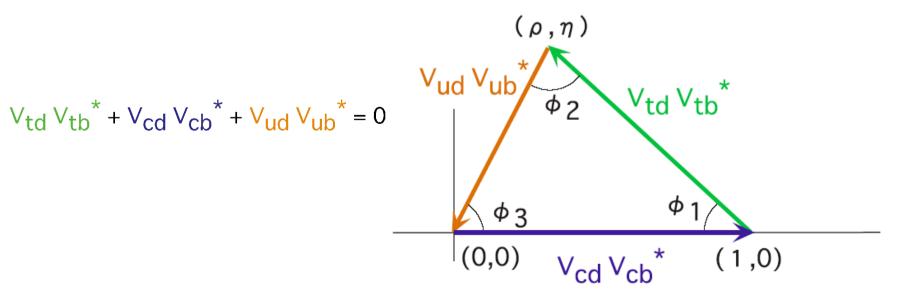


CP violation at Belle

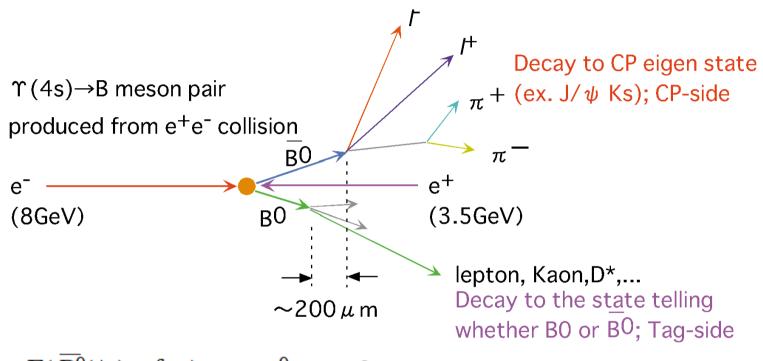

2003/Oct./14th BEAUTY2003

Kenkichi Miyabayashi for Belle collaboration (Nara Women's University)

KM unitarity triangle and CPV parameter convention

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

$$V_{td} V_{tb}^* + V_{cd} V_{cb}^* + V_{ud} V_{ub}^* = 0$$

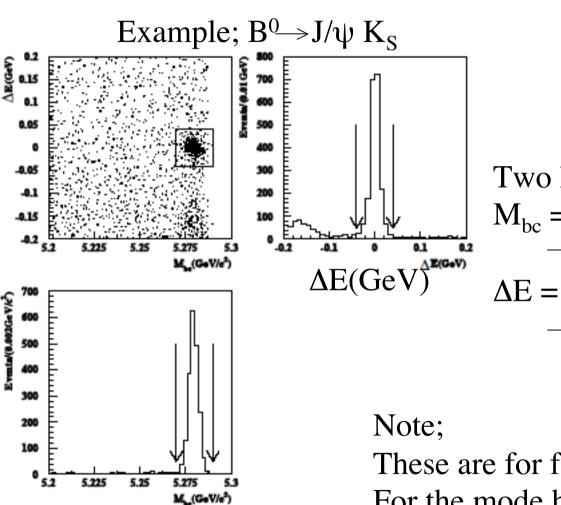


Topics to be covered...

- $\sin 2\phi_1 (\sin 2\beta)$ related (140/fb);
 - − CPV golden mode; $B^0 \rightarrow J/\psi K_S$
 - CPV in B⁰ \rightarrow J/ ψ π ⁰

- ϕ_2 (α) related (78/fb);
 - CPV in B⁰ $\rightarrow \pi^+\pi^-$

Time dependent CP asymmetry



$$A_{CP}(t) = \frac{\Gamma(\ \overline{B^0}(\Delta t) \rightarrow f_{CP}) + \Gamma(\ B^0(\Delta t) \rightarrow f_{CP})}{\Gamma(\ \overline{B^0}(\Delta t) \rightarrow f_{CP}) - \Gamma(\ B^0(\Delta t) \rightarrow f_{CP})} = S_{f_{CP}} \sin(\Delta m \Delta t) + A_{f_{CP}} \cos(\Delta m \Delta t)$$

$$S_{f_{CP}} = \frac{2 \operatorname{Im}(\lambda)}{|\lambda|^2 + 1} \quad A_{f_{CP}} = \frac{|\lambda|^2 - 1}{|\lambda|^2 + 1} \quad \lambda = \xi_{CP} \frac{q}{p} \frac{\overline{A}(f_{CP})}{A(f_{CP})}$$

$$|\lambda| = 1 \text{ if no DCPV}$$

CP eigenstate reconstruction

 $M_{bc}(GeV)$

Two key variables; $M_{bc} = \{ (E_{CM}/2)^2 - (\Sigma P_i)^2 \}^{1/2}$ $\rightarrow B \text{ mass}(5.28\text{GeV})$ $\Delta E = \sum E_i - E_{CM}/2$ $\rightarrow 0$

These are for full-reconstructable case. For the mode having missing ν or K_L , different variables are used.

Vertex recon. to measure Δt

BB system is boosted $\beta\gamma$ =0.425; Δt obtained by Δz

Require consistent with run-dep. IP profile ($\sigma_{r\phi}$ =21 μ m).

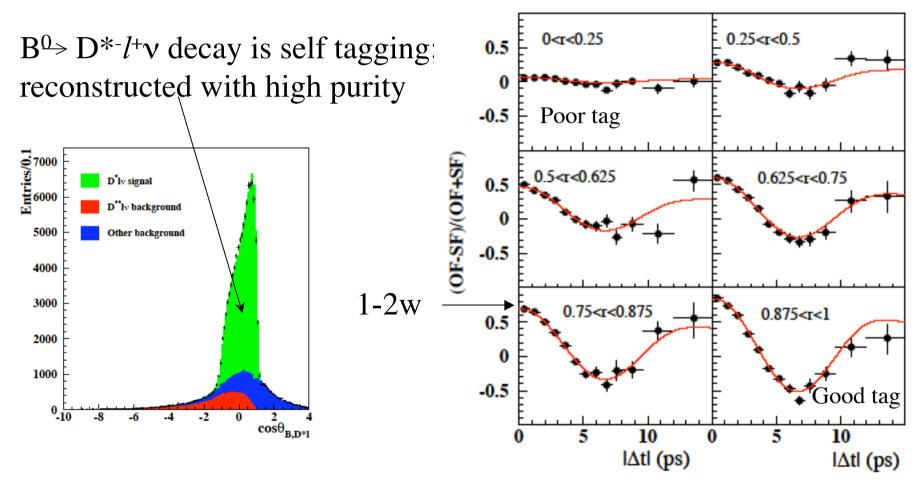
- CP side vertex
 - reconstructed by dilepton from J/ψ , $\pi^+\pi^-$ pair, etc.
- Tag side vertex
 - · Impact parameter w.r.t CP side vertex < 500μm
 - \cdot K_S veto
 - If reduced $\chi^2 > 20$... remove the track having largest χ^2
- Resolution function
 - · including charmed meson lifetime, motion of B meson,
 - · Validation by lifetime measurement.

Flavor tagging by other B decay products

- •Inclusive Leptons:
 - ■high-p l
 - ■intermed-p l⁺
- $b \Rightarrow c \stackrel{|}{\smile}_{S} \stackrel{|}{\downarrow}_{V}$
- •Inclusive Hadrons:
 - •high-p π^+
 - ■intermed-p K⁺
 - •low-p π^-

$$B^{\theta} \rightarrow D^{(*)-}(\pi^{+}) D^{(*)-} \rho^{+}, etc.$$

$$\downarrow K^{+}X, \qquad \pi^{+}\pi^{0}$$


$$D^{\theta}(\pi^{-})$$

Based on the calculated likelihood,

q = +1 for B^0 , -1 for \overline{B}^0 (Tag side)

r = from 0 (no flav. info.) up to 1(perfectly confident tag).

Validation of flavor tagging

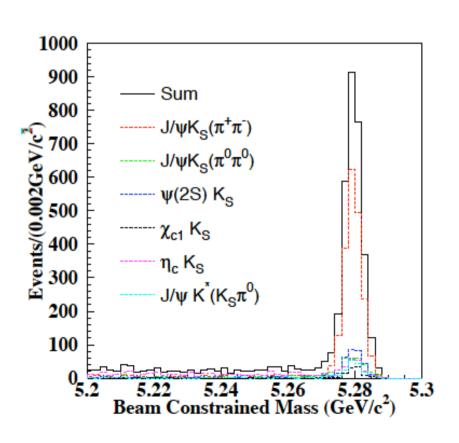
OF-SF asymmetry $\sim (1-2w)\cos(\Delta m\Delta t)$ Δw is also investigated.

CP fit: unbinned max. likelihood fit

Signal probability density function(PDF) is;

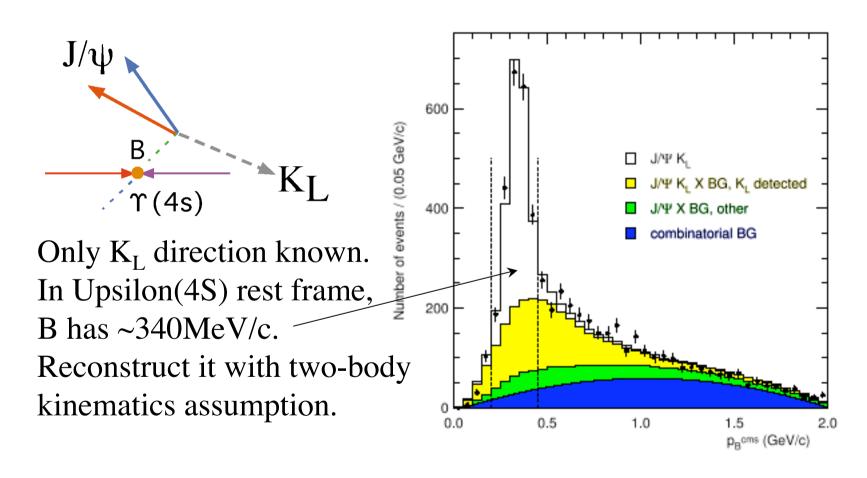
$$P_{\text{sig}}(\Delta t, q, w_l, \Delta w_l)$$

= $\exp(-|\Delta t|/\tau_B)/4\tau_B\{1-q\Delta w_l+q(1-2w_l)[S_{fCP}\sin(\Delta m\Delta t)+A_{fCP}\cos(\Delta m\Delta t)]\}$ here, l is flavor tagging class(1,2,...6).

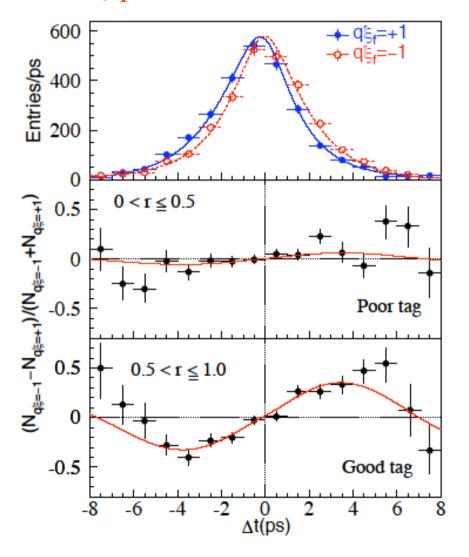

For i-th event, likelihood value is;

$$\begin{split} P_{i}(\Delta t_{i}, & \textbf{S}_{\text{fCP},} \textbf{A}_{\text{fCP}}) \\ = & (1 - f_{ol})[f_{\text{sig}} P_{\text{sig}}(\Delta t, q, w_{l}, \Delta w_{l}) \textcircled{X} \textbf{R}_{\text{sig}}(\Delta t_{i}) + f_{\text{bg}} P_{\text{bg}} \textcircled{X} \textbf{R}_{\text{bg}}(\Delta t_{i})] \\ & + f_{ol} P_{ol}(\Delta t_{i}) \end{split}$$

Free parameters : S_{fCP} and A_{fCP} Proper resolution func. : R_{**}


B life and mixing: PDG values Fraction of each component: f**

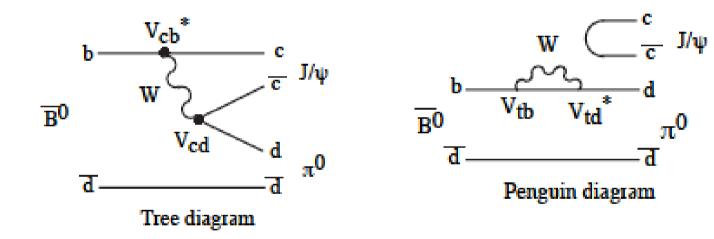
$\sin 2\phi_1$ ($-\xi_{CP}S_{\overline{ccs}}$)measurement $B^0 \rightarrow \text{charmonium} + K \text{ recon.}$


Mode	ξ _{CP}	Nevents	Purity
$J/\psi K_S(\pi^+\pi^-)$	-1	1997	0.98
$J/\psi \ K_S(\pi^0\pi^0)$	-1	288	0.82
$\psi'(l^+l^-) K_S$	-1	145	0.93
$ψ'(J/ψππ) K_S$	-1	163	0.88
$\chi_{c1} K_{S}$	-1	101	0.96
$\eta_{c} (K_{S}K\pi)K_{S}$	-1	123	0.72
$\eta_{c} (KK\pi^{0})K_{S}$	-1	74	0.70
η_{c} (pp) K_{S}	-1	20	0.91
$J/\psi \ K^{*0}(K_S\pi^0)$	+1*	174	0.93
$J/ψ$ K_L	+1	2332	0.60

$B^0 \rightarrow J/\psi \ K_L$ (for $\sin 2\phi_1$ measurement)

CPV in B^0 —charmonium+ K^0 :sin $2\phi_1$

 $\sin 2\phi_1 = 0.733 \pm 0.057 (\text{stat}) \pm 0.028 (\text{syst})$

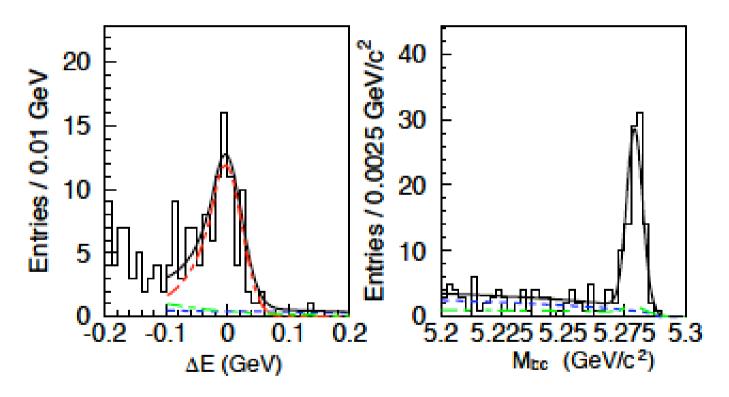


Now precision measurement!

If λ is free in the fit, $|\lambda|=1.007\pm0.041(\text{stat})$ consistent with 1

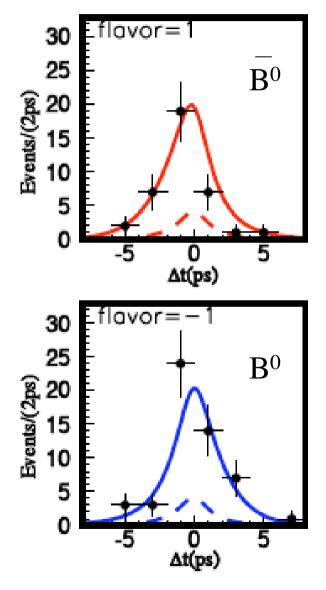
CPV in B⁰ $J/\psi \pi^0$

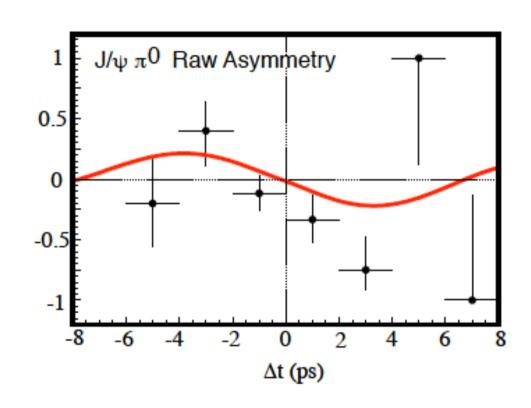
Decay caused by $b \rightarrow c\bar{c}d$ transition $\xi_{CP} = +1$



Tree has no complex phase

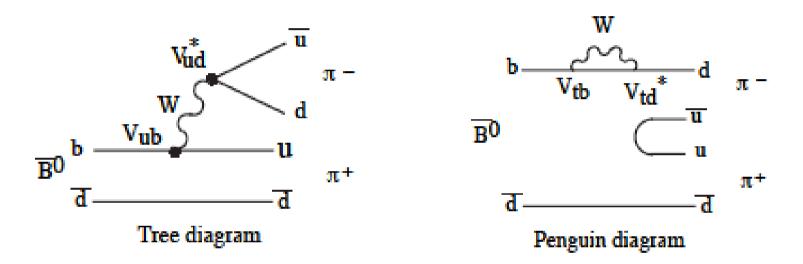
if it dominates $S_{J/\psi\pi} = -\sin 2\phi_1$ and $A_{J/\psi\pi} = 0$


Reconstruction of $B^0 \rightarrow J/\psi \pi^0$


103events reconstructed. Relatively clean; purity=86±10%

Backgrounds are separately est. for $B > J/\psi X$ and combinatorial.

Results for $S_{J/\psi\pi}$ and $A_{J/\psi\pi}$

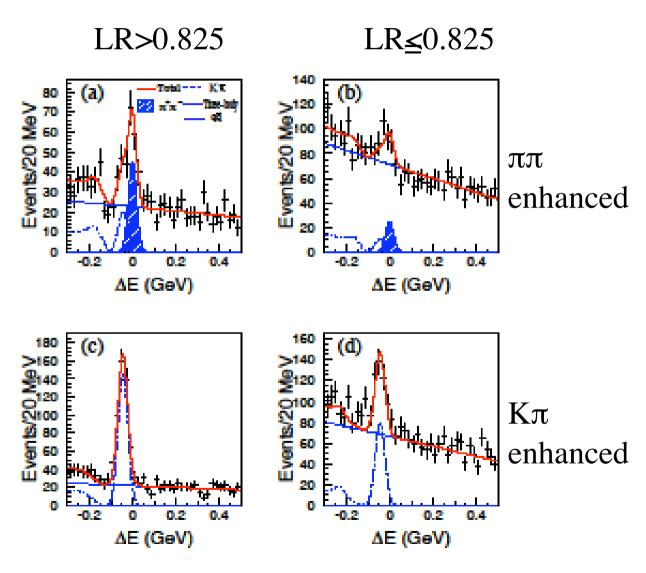


After ftag and vtx, 91 events are used.

$$S_{J/\psi\pi} = -0.72\pm0.42(stat)\pm0.08(syst)$$

$$A_{J/\psi\pi} = -0.01 \pm 0.29 (stat) \pm 0.07 (syst)$$

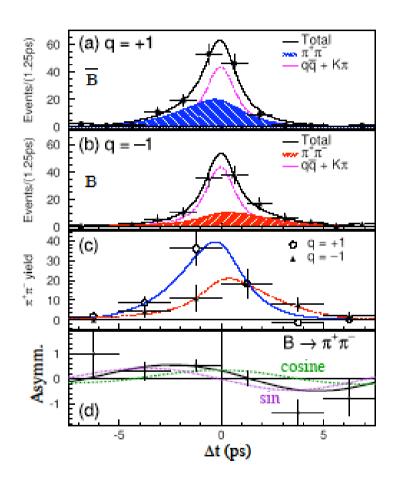
CPV in $B^0 \rightarrow \pi^+ \pi^-$



If only tree contributes, V_{ub} interferes V_{td} (in mixing) \longrightarrow extract ϕ_2 !

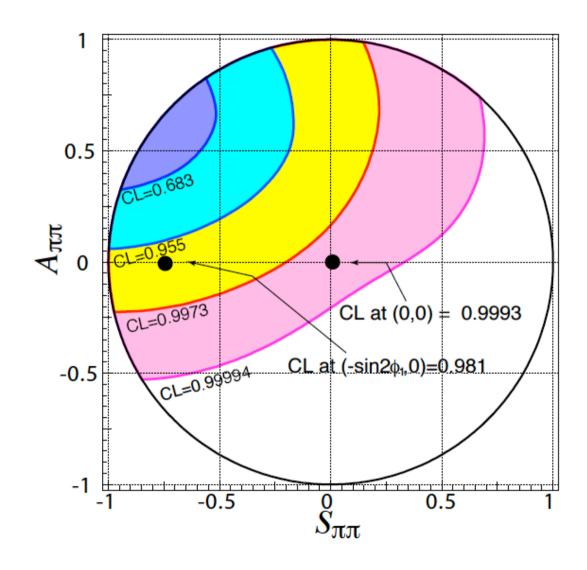
However, penguin looks significantly large $(B^0 \rightarrow \pi^0 \pi^0$, listen T.Higuchi's talk)

→ so that effect on CP asymmetry is there.


Event selection of π^+ π^-

To suppress cont. bg, Likelihood Ratio(LR) is calculated by event shape and B's flight direction. Correlation with flav. tag is taken into account in the CP fit.

760 candidates; (163+24/-23 signals) are obtained by 78/fb.


Results for $S_{\pi\pi}$ and $A_{\pi\pi}$

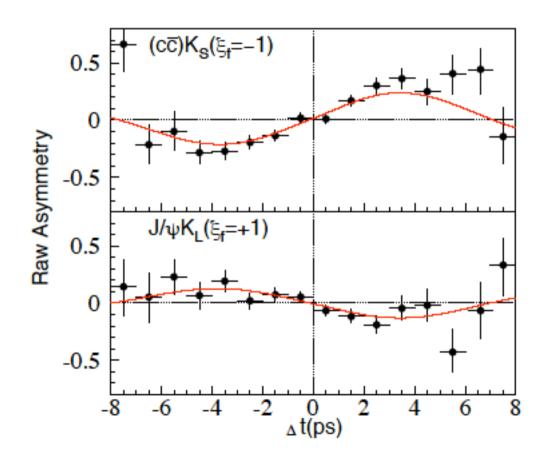
$$S_{\pi\pi} = -1.23\pm0.41(stat) + 0.08/-0.07(syst)$$

 $A_{\pi\pi} = +0.77\pm0.27(stat)\pm0.08(syst)$

Results for $S_{\pi\pi}$ and $A_{\pi\pi}$ (cont.)

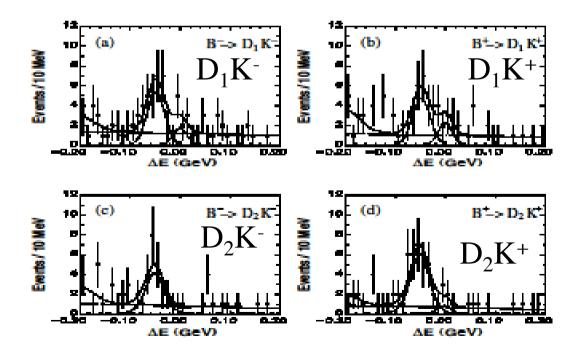
Our result is 3.4 σ away from CP conservation (i.e. $S_{\pi\pi} = A_{\pi\pi} = 0$).

Conclusions and future


- $\sin 2\phi_1 = 0.733 \pm 0.057 (\text{stat}) \pm 0.028 (\text{syst})$
 - Moving into the precision measurement regime.
 - Relevant modes(b→ccd) making progress.
- $B^0 \rightarrow \pi^+\pi^-$ is away from CP conserv.(3.4 σ)
 - Analysis using 140/fb is in progress.

Now going to resume physics run with new SVD and smaller radius beampipe.

Backup slide


$sin 2\phi_1: charmonium + K_S$ and $J/\psi~K_L$

Opposite asymmetry by diff. CP eigenvalue is clearly seen!

B>DK decay can be caused via Vcb and Vub, if D decays into CP eigenstate($D_1(K^+K^-, \pi^+\pi^-), D_2(K_S\pi^0, K_S\varphi, K_S\omega, K_S\eta, K_S\eta')$), possibility to access φ_3

 $A_1=0.06\pm0,19(stat)\pm0.04(sys)$ $A_2=-0.19\pm0.17(stat)\pm0.05(syst)$

