Recent CLEO Results Karl M. Ecklund Cornell University Beauty 2003 October 14, 2003

Beauty 2003

Recent CLEO Results

Karl Ecklund 1

CLEO CKM Results

Unitarity Triangle

Motivation

- Physics of flavor
- CPV from CKM?
- Look for new physics

CLEO's contribution: $|V_{ub}|, |V_{cb}|$ from semileptonic B decays

- Pioneering measurements

- Still among the best!

UT Constraint from $|V_{ub}|$

 $|V_{ub}|$ from $B \rightarrow \pi l \nu$:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

Form factor f(q²):

- Encodes hadronic physics
- Not well known
- Limits |V_{ub}| precision
- CLEO has measured $B \rightarrow \pi l \nu$, plv before
- New measurement that is binned in q^2 , therefore sensitive to shape of $f(q^2)$
- FF computed in quark models, LQCD and LCSR

Exclusive $B \rightarrow \pi \ell v$

- Suppress $b \rightarrow c \ bkgd \ by$ reconstructing v
- Use hermeticity of detector to infer p_v
- Clean events required
 - Remove spurious tracks
 - and hadronic showers
- (E,p) conservation → peaks in M_B & ∆E
- Rate and form factor give |V_{ub}|

Exclusive |V_{ub}|

- 7 B \rightarrow X_u ℓv submodes considered (π , ρ , ω , η)
- 3 q^2 bins for π, ρ
- Simultaneous ML Fit
 - Accounts for cross feed
 - Fit projections shown on right
- Isospin constraints
 - $\frac{1}{2} \Gamma(\pi^{-} \ell \nu) = \Gamma(\pi^{0} \ell \nu)$
 - $\frac{1}{2}\Gamma(\rho^{-}\ell\nu)=\Gamma(\rho^{0}\ell\nu)\approx\Gamma(\omega\ell\nu)$

BF(B⁰→ $\pi^{-}\ell_{\nu}$)=(1.33±0.18±0.11±0.01±0.07)× 10⁻⁴ BF(B⁰→ $\rho^{-}\ell_{\nu}$)=(2.17±0.34^{+0.47}_{-0.54}±0.01±0.41)× 10⁻⁴

Beauty 2003

Extracting |V_{ub}|

$$\frac{d\Gamma(B^0 \to P^- \ell^+ \nu)}{dy \, d\cos\theta_{W\ell}} = |V_{ub}|^2 \frac{G_F^2 k_P^3 M_B^2}{32\pi^3} \sin^2\theta_{W\ell} |f_1(q^2)|^2$$

- Fit dГ/dq²
 - Discriminates among FFs
- $B \rightarrow \pi l v$
 - FF dependence is small
 - Disfavors ISGW2
- $B \rightarrow \rho l v$
 - Larger FF dependence⇒greater model uncertainty in |V_{ub}|

Results

|V_{ub}|=(3.17 ±0.17 ±0.17 ^{+0.53} ±0.03) × 10⁻³

Beauty 2003

Recent CLEO Results

Karl Ecklund 7

World |V_{ub}| Results

Ed Thorndike's Compilation @ FPCP `03

- All measurements are systematics limited
- CLEO pioneering new techniques and
- Using a very wellunderstood detector
- CLEO results still very competitive in B factory era

Beauty 2003

B Semileptonic Branching Fraction

- CLEO II: 10 fb⁻¹ at Υ(4S)
 - Mature, well-understood detector, data, Monte Carlo, generators, etc.
- Lepton-Tagged Analysis
 - p_{tag}>1.4 GeV/c plus accompanying electron with p_e>0.6 GeV/c.
 - Charge, angular correlations to separate primary (B→Xev) from secondary (B→D →Yev).
- Refined electron ID, background and efficiency determinations.
 - Maximize understanding and minimize momentum dependence. B(B

 $\mathcal{B}(B \rightarrow Xev) = (10.88 \pm 0.08 \pm 0.33)\%$

Beauty 2003

Recent CLEO Results

Karl Ecklund 9

\mathcal{B}_{SL} - Status

- Good agreement among different techniques, experiments.
- Measurements at Y(4S) have come up and LEP Z⁰ average has come down.
 - Most recent LEP fit result is (10.59±0.22)%

Inclusive $|V_{cb}|$

Heavy Quark Expansion: double series in 1/M, α_s

$$\begin{split} \Gamma_{sl} &= \frac{G_F^2 |V_{cb}|^2 M_B^5}{192 \pi^3} 0.3689 [1 - 1.54 \frac{\alpha_s}{\pi} - 1.43 \beta_0 \frac{\alpha_s^2}{\pi^2} - 1.648 \frac{\bar{\Lambda}}{M_B} (1 - 0.87 \frac{\alpha_s}{\pi}) - 0.946 \frac{\bar{\Lambda}^2}{M_B^2} - 3.185 \frac{\lambda_1}{M_B^2} \\ &+ 0.02 \frac{\lambda_2}{M_B^2} - 0.298 \frac{\bar{\Lambda}^3}{M_B^3} - 3.28 \frac{\bar{\Lambda}\lambda_1}{M_B^3} + 10.47 \frac{\bar{\Lambda}\lambda_2}{M_B^3} - 6.153 \frac{\rho_1}{M_B^3} + 7.482 \frac{\rho_2}{M_B^3} \\ &- 7.4 \frac{\mathcal{T}_1}{M_B^3} + 1.491 \frac{\mathcal{T}_2}{M_B^3} - 10.41 \frac{\mathcal{T}_3}{M_B^3} - 7.482 \frac{\mathcal{T}_4}{M_B^3} + \mathcal{O}(1/M_B^4)] \;. \end{split}$$

- Ingredients:
 - > B(B→X_c1v) = (10.8±0.3)% (CLEO)
 - \succ $\tau_{B^{\circ}}$ and $\tau_{B^{\pm}}$ (PDG), f₊/ f₀₀ (CLEO)
 - > HQE parameters Λ , λ_1 , from moments $\langle E_{\gamma} \rangle$: $B \rightarrow X_s \gamma$, $\langle M_{\chi}^2 \rangle$: $B \rightarrow X_{1\nu}$ (CLEO)
 - > HQE parameter λ_2 =0.128±0.010 from B*-B mass difference
 - $\Rightarrow \Gamma_{SL} = (0.44 \pm 0.02) \times 10^{-10} \text{ MeV}$
- Result:

 $|V_{cb}| = 0.0411 \pm 0.0005_{exp \Lambda, \lambda 1} \pm 0.0007_{exp \Gamma} \pm 0.0009_{theory}$ Overall precision: ~3% + quark-hadron duality.

Beauty 2003

New and Improved Measurement of the Hadronic Mass Moments in $B \rightarrow X_c lv$

hep-ex/0307081 contributed to Lepton-Photon 2003

- Compute recoiling hadronic mass from charged lepton and neutrino kinematics - neutrino "reconstruction"
- Near hermeticity of CLEO II ⇒ Neutrino="What's missing"

Preliminary

Fit 3-dimensional differential decay rate, extract hadronic mass squared as a function of lepton-energy cut $(p_l > 1 \text{ GeV/c}).$

$$M_X^2 = M_B^2 + q^2 - 2E_{beam}(E_\ell + E_v) + 2|\vec{p}_B||\vec{q}|\cos\theta_{B-q}$$

$$\underbrace{M_X^2 = M_B^2 + q^2 - 2E_{beam}(E_\ell + E_v) + 2|\vec{p}_B||\vec{q}|\cos\theta_{B-q}}_{\text{neglected}}$$
Beauty 2003
Recent CLEO Results
Karl

Selection criteria:

- Cuts to enhance v reconstruction
- Continuum suppression
- Efficiency ~2% for $B \rightarrow X_c Iv$
- Sample to fit: 122K events
- Components of fit:
 - B → Dlv } HQET+measured FFs
 - $B \rightarrow D^* I_V$
 - B→D**lv ISGW2
 - B→(X_c)_{NR}Iv Goity/Roberts
 - $B \rightarrow X_u I_V$ ISGW2+NR
 - Secondaries CLEO MC
 - Fake Leptons, Continuum fixed with data

Fit Projections

Neutrino Energy

GeV

Beauty 2003

Results

hep-ex/0307081

Moment Value for $B \rightarrow X_c lv$

Cut (GeV)	$\langle M_X^2 - \overline{M}_D^2 angle ~({ m GeV}^2/c^4)$
$E_{\ell} > 1.0$	$0.456 \pm 0.014 \pm 0.045 \pm 0.109$
$E_\ell > 1.1$	$0.422 \pm 0.014 \pm 0.031 \pm 0.084$
$E_\ell > 1.2$	$0.393 \pm 0.013 \pm 0.027 \pm 0.069$
$E_\ell > 1.3$	$0.364 \pm 0.013 \pm 0.030 \pm 0.054$
$E_{\ell} > 1.4$	$0.332 \pm 0.012 \pm 0.027 \pm 0.055$
$E_\ell > 1.5$	$0.293 \pm 0.012 \pm 0.033 \pm 0.048$

- Consistent with previous CLEO measurements, BaBar summer '03, DELPHI
- Interpretation is ongoing

stat ± syst ± model

Beauty 2003

More CLEO Physics Results

- Rare B decays
 - A_{CP} in $B \rightarrow K^{*+}\pi^{-}$
 - $B \rightarrow \eta' X_s BF$
 - Upper Limit on Baryons in $B \rightarrow X_s \gamma$
- Hadronic B Decays
 - B→D^(*)ρ helicity analysis (Final State Interactions)
- Upsilon Decays
 - Y(3S)→ωY(1S)
 - Two-body Y(nS) decays
 - Searches for cc states

- Charmed Baryons
 - CPV in $\Lambda_c \rightarrow \Lambda e v$
- Charm Decays
 - Branching fractions
 - Mixing and DCSD
 - Dalitz plot analyses
 - Hadronic structure
 - CPV via interference in Dalitz Plot $D^0 \rightarrow \pi^+\pi^-\pi^0$
 - D_s spectroscopy
 - See talk by JC Wang

Summary

- CLEO is still contributing to |V_{ub}| and |V_{cb}| measurements
 |V_{cb}|
 |V_{cb}|
- See talks by
 - David Asner on CLEO-c Prospects
 - J.C. Wang on the new D_{sJ} states