Charm Physics at Belle

Beauty 2003, 15 Oct. K.Trabelsi (Univ. of Hawaii) for V.Eiges/Belle

<u>Outline</u>

- Double charmonium production : $e^+e^- \rightarrow J/\psi \ c\bar{c}$
- Charmed mesons D^{**} and D_{sJ}
- Rare decay $D^0 \rightarrow V\gamma$

Beauty 2003 - p.1/25

Search for $e^+e^- \rightarrow J/\psi + (c\bar{c})$ production, where the additional $c\bar{c}$ pair fragments into either charmonium or charmed hadrons.

- PRL 89, 142001 (2002) with 46.2/fb
- LP03-274 (BELLE-CONF-0331) with 101.8/fb

Study J/ψ recoil mass spectrum around $M_{recoil} \sim 3 \text{ GeV/c}^2$: $(M_{recoil} = ((E_{CMS} - E_{J/\psi})^2 - p_{J/\psi}^2)^{1/2})$

- Constrain J/ψ into nominal mass to improve resolution
- Verify recoil mass scale using $e^+e^- \rightarrow \psi(2S)\gamma$, ($\psi(2S) \rightarrow J/\psi\pi^+\pi^-$) for calibration : recoil mass bias < 3 MeV/c²
- fit includes all known charmonium :

$$\eta_c, J/\psi, \chi_{c0}, \chi_{c1}, \chi_{c2}, \eta_c(2S), \psi(2S)$$

• Masses of η_c , χ_{c0} , $\eta_c(2S)$ free

Beauty 2003 – p.2/25

Double charmonium production

 $\sigma(e^+e^- \to J/\psi J/\psi) \times \mathcal{B}(J/\psi \to > 2\text{charged}) < 0.008 \text{ pb} @ 90\% CL$

Beauty 2003 – p.3/25

 $e^+e^- \rightarrow J/\psi$ + open charm

Fit $D(\Lambda_c)$ signals in $M_{l^+l^-}$ bins

Beauty 2003 - p.4/25

- All final charm hadrons are reconstructed (except for Ξ_c)
- Sum over $D^0, D^+, D_s^+, \Lambda_c^+$ and $(c\bar{c})_{res}$ yields to determine the fraction of the total prompt J/ψ production that is accompanied by another $c\bar{c}$ system :

$$\frac{\sigma(e^+e^- \to J/\psi c\bar{c})}{\sigma(e^+e^- \to J/\psi X)} \bigg|_{P_{J/\psi} > 2.0 GeV/c} = \frac{0.5(N_{D^0} + N_{D^+} + N_{D^+_s} + N_{\Lambda^+_c}) + N_{(c\bar{c})_{res}}}{N_{J/\psi}}$$
$$= 0.82 \pm 0.15 \pm 0.14$$

 $\Rightarrow J/\psi c\bar{c}$ cross section is an order of magnitude larger than predictions and contradicts the NRQCD expectation that $J/\psi c\bar{c}$ is small (same for $J/\psi \eta_c$)

P-wave D^{**0} *mesons* ($c\bar{u}$) *in B mesons*

spin-parity J^P light quark angular momenta j_q

 \Rightarrow hep-ex/0307021 \rightarrow PRD

Beauty 2003 - p.6/25

 $B^- \to D^{(*)+} \pi^- \pi^-$ (60.4/fb)

 $\mathcal{B}(B^- \to D^+ \pi^- \pi^-) = (1.02 \pm 0.04 \pm 0.15) \times 10^{-3}$

 $< 1.4 \times 10^{-3}$ (CLEO, Phys.Rev.D50, 43)

 $\mathcal{B}(B^- \to D^{*+}\pi^-\pi^-) = (1.25 \pm 0.08 \pm 0.22) \times 10^{-3}$

 $(1.9 \pm 0.7) \times 10^{-3}$ (CLEO, Phys.Rev.D50, 43)

Beauty 2003 – p.7/25

$$\begin{split} M_{D_2^{*0}} &= (2461.6 \pm 2.1 \pm 0.5 \pm 3.3) \; \text{MeV/c}^2, \, \Gamma_{D_2^{*0}} = (45.6 \pm 4.4 \pm 6.5 \pm 1.6) \; \text{MeV} \\ \mathcal{B}(B^- \to D_2^{*0} \pi^-) \times \mathcal{B}(D_2^{*0} \to D^+ \pi^-) = (3.4 \pm 0.3 \pm 0.6 \pm 0.4) \times 10^{-4} \\ M_{D_0^{*0}} &= (2308 \pm 17 \pm 15 \pm 28) \; \text{MeV/c}^2, \, \Gamma_{D_0^{*0}} = (276 \pm 21 \pm 18 \pm 60) \; \text{MeV} \\ \mathcal{B}(B^- \to D_0^{*0} \pi^-) \times \mathcal{B}(D_0^{*0} \to D^+ \pi^-) = (6.1 \pm 0.6 \pm 0.9 \pm 1.6) \times 10^{-4} \end{split}$$

$$\begin{split} M_{D_1^0} &= (2421.4 \pm 1.5 \pm 0.4 \pm 0.8) \text{ MeV/c}^2, \ \Gamma_{D_1^0} &= (23.7 \pm 2.7 \pm 0.2 \pm 4.0) \text{ MeV} \\ \mathcal{B}(B^- \to D_1^0 \pi^-) \times \mathcal{B}(D_1^0 \to D^{*+} \pi^-) &= (6.8 \pm 0.7 \pm 1.3 \pm 0.3) \times 10^{-4} \\ \mathcal{B}(B^- \to D_2^{*0} \pi^-) \times \mathcal{B}(D_2^{*0} \to D^{*+} \pi^-) &= (1.8 \pm 0.3 \pm 0.3 \pm 0.2) \times 10^{-4} \\ \Rightarrow R &= \frac{B(B^- \to D_2^{*0} \pi^-)}{B(B^- \to D_1^{*0} \pi^-)} = 0.77 \pm 0.15 \text{ (Neubert ≈ 0.35, CLEO : 1.8 ± 0.8)} \end{split}$$

$$\begin{split} M_{D_1'^0} &= (2427 \pm 26 \pm 20 \pm 15) \text{ MeV/c}^2, \ \Gamma_{D_1'^0} &= (384^{+107}_{-75} \pm 24 \pm 70) \text{ MeV} \\ \mathcal{B}(B^- \to D_1'^0 \pi^-) \times \mathcal{B}(D_1'^0 \to D^{*+} \pi^-) &= (5.0 \pm 0.4 \pm 1.0 \pm 0.4) \times 10^{-4} \end{split}$$

D_{sJ} observations

- BaBar (PRL 90, 242001) reported observation of a new resonance at 2317 MeV in $D_s^+\pi^0$ final state
- CLEO (hep-ex/0305017 \rightarrow PRD) observed resonance at 2459 MeV in $D_s^{*+}\pi^0$ final state

$D_{sJ}(2317)^+$ and $D_{sJ}(2457)^+$, 86.9/fb


```
hep-ex/0307052 \rightarrow PRL
```

- $\underline{D_{sJ}(2317)} \to D_s^+ \pi^0$
 - $N = 761 \pm 44$ events
 - $\Delta M = M(D_{sJ}(2317)) M(D_s)$ = (348.7 ± 0.5) MeV/c²
 - $M(D_{sJ}(2317)) = (2317.2 \pm 0.5) \text{ MeV/c}^2$

 $D_{sJ}(2457) \to D_s^{*+} \pi^0$

- $N = 126 \pm 25$ events
- $\Delta M = M(D_{sJ}(2457)) M(D_s^*)$ = (344.1 ± 1.3) MeV/c²
- $M(D_{sJ}(2457)) = (2456.5 \pm 1.3) \text{ MeV/c}^2$

Beauty 2003 - p.11/25

Strange property of these states is their surprisingly low mass compared to the potential model expectations :

 $c\bar{s}$ D_{sJ} (2317) D_{sJ} (2457)

Their masses are practically equal to those of similar states in the $c\bar{u}$ system :

$$c \bar{u}$$
 D_0^{*0} $D_1^{'0}$
 M (MeV/c²) 2308 ± 30 2427 ± 36

Beauty 2003 – p.12/25

To clarify the nature of discovered states, necessary to determine their quantum numbers and the branching fractions of their decays

Dominant exclusive process for the D_{sJ} production in *B* decays is $B \rightarrow \overline{D}D_{sJ}$:

The kinematics is completly determined by the quantum numbers of the *B* meson and final *D* mesons \rightarrow the angular analysis of these decays will **unambiguously** determine the quantum numbers of D_{sJ} mesons. \Rightarrow hep-ex/0308019 \rightarrow PRL \overline{D} is reconstructed as D^0 or D^+ , clear signals are observed for :

- $\bar{D}D_{sJ}(2317)[D_s\pi^0]$
- $\bar{D}D_{sJ}(2457)[D_s^*\pi^0]$
- $\bar{D}D_{sJ}(2457)[D_s\gamma]$

Beauty 2003 - p.14/25

Use ΔE distributions to calculate the branching fractions

Beauty 2003 - p.15/25

 $D_{sJ}(2457)^+ \rightarrow D_s^+ \gamma$ in continuum

- $N = 152 \pm 18$ events
- $\Delta M = M(D_{sJ}(2457)) M(D_s)$ = 491.0 ± 2.3 MeV/c²

•
$$M(D_{sJ}(2457))$$

= 2459.5 ± 2.4 MeV/c²

 \Rightarrow first observation, rules out 0^{\pm} as-

 $\frac{\mathcal{B}(D_{sJ}^+(2457) \to D_s^+\gamma)}{\mathcal{B}(D_{sJ}^+(2457) \to D_s^{*+}\pi^0)} = 0.55 \pm 0.13(\text{stat}) \pm 0.08(\text{syst})$

Beauty 2003 – p.16/25

 $D_{sJ}(2457)^+ \rightarrow D_s^+ \pi^+ \pi^-$ in continuum

- $N = 59.7 \pm 11.5$ events (5.7 σ)
- $\Delta M = M(D_{sJ}(2457)) M(D_s)$ = 491.4 ± 1.7 MeV/c²

•
$$M(D_{sJ}(2457))$$

= 2459.9 ± 1.8 MeV/c²

First observation (also rules out the 0^+ assignment)

$$\frac{\mathcal{B}(D_{sJ}^+(2457) \to D_s^+\pi^+\pi^-)}{\mathcal{B}(D_{sJ}^+(2457) \to D_s^{*+}\pi^0)} = 0.14 \pm 0.04 \text{(stat)} \pm 0.02 \text{(syst)}$$

Beauty 2003 – p.17/25

Summary of $B \to \bar{D}D_{sJ}$

B mode	D_{sJ} mode	$B(10^{-4})$	Significance (σ)
$\bar{D}D_{sJ}(2317)$	$D_s \pi^0$	$8.5^{+2.1}_{-1.9}\pm2.6$	6.1
	$D_s^*\gamma$	< 7.5	_
$\bar{D}D_{sJ}(2457)$	$D_s^*\pi^0$	$17.8^{+4.5}_{-3.9}\pm5.3$	6.4
	$D_s\gamma$	$6.7^{+1.8}_{-1.2}\pm2.0$	7.4
	$D_s^*\gamma$	< 7.3	—
	$D_s \pi^0$	< 1.6	—
	$D_s \pi^+ \pi^-$	< 1.8	—

$$\frac{B(D_{sJ}(2457) \to D_s \gamma)}{B(D_{sJ}(2457) \to D_s^* \pi^0)} = 0.38 \pm 0.11 \pm 0.04$$

 \rightarrow consistent with theoretical prediction (W.A.Bardeen, E.J.Eichten and C.T.Hill (hep-ph/0305049))

Beauty 2003 - p.18/25

Helicity angle $\theta_{D_s\gamma}$ defined as the angle between $D_{sJ}(2457)$ momentum in the *B* meson rest frame and the D_s momentum in the $D_{sJ}(2457)$ rest frame

Belle observed $D_{sJ}(2317)$ and $D_{sJ}(2457)$ in B decays in agreement with the assumption that they are P-wave states with $j_q = 1/2$ (A. Le Yaouanc *et al.*, hep-ph/0107047) Beauty 2003 – p.19/25

$D \rightarrow V\gamma$ (LP03-303/BELLE-CONF-0346)

(a) short–distance contribution (b) long–distance contribution

•
$$\mathcal{B}(D^0 \to \phi \gamma)_{th} = (0.04 - 3.4) \times 10^{-5}$$

• most important background : Cabibbo & color-suppressed $D^0 \rightarrow \phi \pi^0, \phi \eta$

selection :

- D* tag and P*(D*) > 2.9 GeV/c
- high momentum π^0 , η , γ
- 78.1/fb

Rare decay : $D^0 \rightarrow \phi \pi^0$

$$N_{cand}$$
 = 1254 \pm 39 events

branching ratio measured with $D^0 \rightarrow K^+ K^-$ as reference

B $(D^0 \to \phi \pi^0)$ = $(8.01 \pm 0.26 \pm 0.47) \times 10^{-4}$

Use $\cos \theta_{hel}$ as a cross-check : conservation of angular momentum $\rightarrow \cos^2 \theta_{hel}$

fit the $M(\phi\pi^0)$ yield in $\cos\theta_{hel}$ bins

Beauty 2003 – p.21/25

Rare decay : $D^0 \rightarrow \phi \eta$

Beauty 2003 – p.23/25

 $D^0 \to \phi \gamma$

 \Rightarrow first observation of a FCNC decay in the D system

Beauty 2003 - p.24/25

- Confirm that $J/\psi c\bar{c}$ cross-section is an order of magnitude larger than predicted by NRQCD
- Dalitz analysis for $B \to D^{(*)+}\pi^-\pi^-$ and observed missing P-wave states D_0^{*0} and D_1^{*0}
- Belle observed exclusive $B \rightarrow DD_{sJ}(2317)$ and $B \rightarrow DD_{sJ}(2457)$ decays consistent with 0^+ and 1^+ (both having $j_q = 1/2$)
 - $D_{sJ}(2457) \rightarrow D_s^+ \gamma$ in both continuum and B decays
 - $D_{sJ}(2457) \rightarrow D_s^+ \pi^+ \pi^-$ in continuum
- First observation of FCNC charm decay : $D^0 \rightarrow \phi \gamma$