

BEAUTY 2003

Review of Recent Results in Charm Physics

9th International Conference on B-Physics at Hadron Machines - BEAUTY 2003 Carnegie Mellon University, Pittsburgh, October 14-18, 2003

Jürgen Engelfried Instituto de Física Universidad Autónoma de San Luis Potosí Mexico

 $^0 \rm jurgen@ifisica.uaslp.mx, http://www.ifisica.uaslp.mx/~jurgen$

Introduction

Open Charm in the previous ~ 5 years:

- The "Traditional" Charm Experiments: E791, FOCUS, SELEX, (WA89, WA92), CLEO, H1/ZEUS
- "Traditional" Topics: Production, Lifetime, rare decays, resonances in decay, $D^0 \overline{D^0}$ mixing
- Small number of theory and phenomenology papers

In the last year or so:

- New players: BaBar and Belle, CDF
- New charm states: double charm baryons, hidden double charm $(J/\Psi c\overline{c}), D_s^*, X(3872)$
- New particles: Z^+ (Θ^+), triggered Θ_c^0 predictions
- Large number of "theory" papers: spectroscopy, production
- Shift of used words in papers: di-quark

Outline

- $D^0 \overline{D^0}$ Mixing
- Decays of D^0 , D^+ , D_s^+ Mesons
- New D_s states
- Charmed Baryons: New Modes in Λ_c^+ , Ξ_c^+ , Ξ_c^0 , Ω_c^0
- Charmed Baryons: Mass of Σ_c , Ω_c^0
- Doubly Charmed Baryons: Update on SELEX Observations

More talks about charm:

- Chunhui Chen: Heavy Flavour Production at the Tevatron (today 11:30)
- J.C. Wang: Review of New D_S States (today 2pm)
- Karim Trabelsi: Charm Physics at Belle (today 2:45pm)
- Robert Harr: Recent Heavy Flavor Results from CDF (yesterday 9:30) (Belle X(3872))
- David Asner: $CLEO_c$

$D^0 - \overline{D^0}$ Mixing

usually measured: Lifetime difference between $D^0 \to K^- K^+$ and $D^0 \to K^- \pi^+$

$$y_{\mathcal{CP}} = \frac{\tau(K^- \pi^+)}{\tau(K^- K^+)} - 1 \qquad \text{Standard Model:} \quad y_{\mathcal{CP}} \sim 10^{-3}$$

Recent Results:

Belle:
$$y_{C\mathcal{P}} = (+1.15 \pm 0.69 \pm 0.38) \%$$
 (hep-ex/0308034)BaBar: $y_{C\mathcal{P}} = (-0.8 \pm 0.4 \substack{+0.5 \\ -0.4}) \%$ (hep-ex/0306003)also includes $D^0 \rightarrow \pi^+ \pi^-$ CLEO: $y_{C\mathcal{P}} = (-1.2 \pm 2.5 \pm 1.4) \%$ (PRD65, 2002)also includes $D^0 \rightarrow \pi^+ \pi^-$ FOCUS: $y_{C\mathcal{P}} = (3.42 \pm 1.39 \pm 0.74) \%$ (PLB485, 2000)E791: $y_{C\mathcal{P}} = (0.8 \pm 2.9 \pm 1.0) \%$ (PRL83, 1999)Measured $\Delta\Gamma = (0.04 \pm 0.14 \pm 0.05) \text{ ps}^{-1}$

Also: Analyze "wrong sign" Double Cabibbo Suppressed $D^0 \to K^+\pi^-$ BaBar: -0.056 < y' < 0.039 (95% C.L.) (hep-ex/0304007) CLEO: -0.058 < y' < 0.01 (95% C.L.) (PRL84, 2000)

Review of Recent Results in Charm Physics

Review of Recent Results in Charm Physics

Jürgen@BEAUTY2003 15Oct2003. 5

Rare Decays of D Mesons: D^+, D_s^+

(hep-ex/0309065)

 $\mathcal{B}(D^+ \to \pi^+ \pi^0) = (1.31 \pm 0.17 \pm 0.09 \pm 0.09) \cdot 10^{-3}$ $\mathcal{B}(D^+ \to K^+ \overline{K^0}) = (5.24 \pm 0.43 \pm 0.20 \pm 0.34) \cdot 10^{-3}$ $\mathcal{B}(D^+ \to K^+ \pi^0) < 4.2 \cdot 10^{-4} \quad (90\% \text{ C.L.})$

FOCUS: Limits on Rare and SM-Forbidden Di-Muon Decays for D^+ and D_s^+

Decay Mode	FOCUS Limit	Previous Best
$D^+ \to K^+ \mu^- \mu^+$	$9.2 \cdot 10^{-6}$	$44 \cdot 10^{-6}$
$D^+ \to K^- \mu^+ \mu^+$	$13 \cdot 10^{-6}$	$120 \cdot 10^{-6}$
$D^+ \to \pi^+ \mu^- \mu^+$	$8.8 \cdot 10^{-6}$	$15\cdot 10^{-6}$
$D^+ \to \pi^- \mu^+ \mu^+$	$4.8 \cdot 10^{-6}$	$17 \cdot 10^{-6}$
$D_s^+ \to K^+ \mu^- \mu^+$	$36 \cdot 10^{-6}$	$140 \cdot 10^{-6}$
$D_s^+ \to K^- \mu^+ \mu^+$	$13 \cdot 10^{-6}$	$180 \cdot 10^{-6}$
$D_s^+ \to \pi^+ \mu^- \mu^+$	$26 \cdot 10^{-6}$	$140 \cdot 10^{-6}$
$D_s^+ \to \pi^- \mu^+ \mu^+$	$29 \cdot 10^{-6}$	$82 \cdot 10^{-6}$

(hep-ex/0306049)

CDF: $D^0 \to \mu^+ \mu^- < 2.5 \cdot 10^{-6}$ (hep-ex/0308059)

E791: Scalar Resonances in D^+ and D_s^+ Decays

Need to include two Scaler Resonance: $K\pi$ with mass (797 ± 19 ± 43) MeV/ c^2 , width (410 ± 43 ± 87) MeV/ c^2 $\pi\pi$ with mass (478⁺²⁴₋₂₃ ± 17) MeV/ c^2 , width (324⁺⁴²₋₄₀ ± 21) MeV/ c^2

> (PRL89, 2002; hep-ex/0307008; PRL86, 2001) Jürgen@BEAUTY2003 15Oct2003. 7

The D_s System

(hep-ex/0304021; PRL90, 2003)

CLEO: (PRD68, 2003; hep-ph/0308166)

Review of Recent Results in Charm Physics

Jürgen@BEAUTY2003 15Oct2003. 8

Charmed Baryons: $\Lambda_c^+, \Sigma_c^{0,++}$

CLEO: $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^0$

CLEO: Masses and Widths of Σ_c^{++} and Σ_c^0

Charmed Baryons: FOCUS: Ξ_c^+ Branching Ratios

Also have upper limits for other resonance modes.

Review of Recent Results in Charm Physics

Charmed Baryons: CLEO: Ξ_c^+ Lifetime, $\mathcal{B}(\Xi_c^0 \to pK^-K^-\pi^+)$

$$\tau(\Xi_c^+) = (503 \pm 47 \pm 18)$$

(PRD65, 2002)

$$\frac{\mathcal{B}(\Xi_c^0 \to pK^-K^-\pi^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^-\pi^+)} = 0.35 \pm 0.08 \pm 0.05$$

Also see evidence for resonant $\overline{K^*(892)^0}$ substructure. (hep-ex/0309020)

Charmed Baryons: Mass and semileptonic decays of Ω_c^0

Semileptonic decays:

Experiment	$\Omega_c^0 \to \Omega^- \mu^+ \nu$	$\Omega_c^0 \to \Omega^- e^+ \nu$	$\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- l^+ \nu)}$
Belle (LP2003)	33.1 ± 8.2	31.9 ± 7.1	$0.8 \pm 0.2 \pm 0.1$
CLEO (PRL89, 2002)		11.4 ± 3.8	$0.41 \pm 0.19 \pm 0.04$

Model Predictions for Doubly Charmed Baryon Masses

- Several Authors (Bjorken 1986, Fleck&Richard 1989, Roncaglia 1995, Ellis 2002)
- Different models (Phenomenology, Bag, Quarkonium)
- Masses (J=1/2): $3.516 3.66 \,\text{GeV}/c^2$
- Masses (J=3/2): $3.636 3.81 \,\text{GeV}/c^2$

Overall Features

- ground states near $3.6 \,\mathrm{GeV}/c^2$
- ground states Isospin=1/2 multiplets degenerate
- Hyperfine splitting around $60 120 \,\mathrm{MeV}/c^2$
- Most predict electromagnetic hyperfine transition (but some pionic)
- Model dependent predictions for orbital and radial excitations

Review of Recent Results in Charm Physics

The SELEX Experiment at Fermilab

SELEX experiment

- Forward $(x_F > 0.1)$ charm production
- Σ^-, π, p beam at 600 GeV/c
- RICH PID above $\sim 22 \,\mathrm{GeV}/c$
- 20 plane Si-Vertex.
- Data taken 1996/7

SELEX: Experimental Evidence from 2002

SELEX reported 3 significant high mass peaks

SELEX argued that these states are doubly-charmed baryons

SELEX Search Strategy for Doubly-Charmed Baryons

- ccq decays to $csqu\bar{d}$. Look for charm, strange and baryon in final state. SELEX started with $\Lambda_c^+ K^- \pi^+(\pi^+)$.
- Look for new secondary vertex between primary and Λ_c^+
- no RICH PID on new $K^-\pi^+$ tracks (too soft)
- All other cuts fixed from previous searches

- Right sign has peak at 3520. 15.8 signal, 6.2 background. 6.3σ
- Wrong sign has no structure Jürgen@BEAUTY2003 15Oct2003. 17

SELEX: Search for $ccd^+(3520)$ Isopartner: ccu^+

- same cuts as before: 3.5σ hint in $\Lambda_c^+ K^- \pi^+ \pi^+$.
- No peak in wrong sign $(\Lambda_c^+ K^+ \pi^- \pi^+)$.
- Try additional cut: $\cos \Theta_K^* > 0.6$ to remove soft vertex tracks
- Mass peak at 3460. 7.1 signal, 0.9 background. 7.5 σ
- Loss of signal consistent with phase space (L = 0)
- $\Xi_{cc}^{++}(3460), \Xi_{cc}^{+}(3520)$ Isodoublet??

Mass 3460 $\overline{\text{MeV/c}^2}$

 $\Lambda_{c}^{+} \operatorname{K}^{-} \pi^{+} \pi^{+}$

SELEX: Where is the Isopartner to $\Xi_{cc}^{++}(3460)$?

- apply $\cos \Theta_K^* > 0.6$ also to $\Lambda_c^+ K^- \pi^+$
- ccd⁺(3520) strongly attenuated:
 ⇒ not phase space
- \Rightarrow NOT isopartner to $ccu^{++}(3460)$

New $ccd^+(3443)$ now very significant

- there was a "bump" before was ignored
- Now: 7.4 signal, 1.6 background. $5.8\,\sigma$
- Consistent with L = 0
- $ccd^+(3443)$ is partner to $ccd^{++}(3460)$

SELEX: Where is the Isopartner to $\Xi_{cc}^+(3520)$?

- $ccd^+(3520)$ not phase space $(\cos \Theta_K^* < 0.6)$
- Λ_c^+ and K^- are back-to-back: $\cos \Theta_K^* \cos \Theta_{\Lambda_c}^* < -0.25$ keeps most of signal
- Apply also to $\Lambda_c^+ K^- \pi^+ \pi^+$ sample: Nothing
- Reduce cut to $L/\sigma > 0.25$

New $ccu^{++}(3541)$ now very significant

- 7.4 signal, 1.6 background. $5.8\,\sigma$
- Consistent with L > 0
- $ccu^{++}(3541)$ is partner to $ccd^{+}(3520)$

Doubly Charmed Baryons

Lifetimes

- SELEX tried to measure lifetime All lifetimes near resolution limit < 30 fs
- Model predictions: several hundreds of fs.
- Bardeen, Eichten and Hill: spectroscopy of cc

$$J^{P} = \frac{1}{2}^{+} [c \uparrow c \uparrow L = 0, J^{P} = 1^{+}] q \downarrow$$
$$J^{P} = \frac{1}{2}^{-} [c \uparrow c \downarrow L = 1, J^{P} = 1^{-}] q \downarrow$$

- Predicted splitting consistent with observed $78 \,\mathrm{MeV}/c^2$
- First EM transition is M2.

Production

- SELEX: Dominantly produced by baryon beam.
- E791 has looked in 250 GeV/c π^- production no signal
- FOCUS looked in $250 \,\mathrm{GeV}/c$ photo-production no signal

Review of Recent Results in Charm Physics

Jürgen@BEAUTY2003 15Oct2003. 23

Conclusions

- Charm Physics is more exciting than ever
- New Results on Mixing, (rare) decays, and masses of Mesons and Baryons
- New States in the D_s system
- Doubly Charmed Baryons