Review of The New D_{sJ} States

Jianchun Wang Syracuse University

BEAUTY 2003 Conference, Pittsburgh 10/15/2003

Spin Parity of D_{sJ} Mesons

$$\vec{j} = \vec{L} + \vec{S}_{s}$$
$$\vec{S} = \vec{S}_{s} + \vec{S}_{c}$$
$$\vec{J} = \vec{j} + \vec{S}_{c}$$
$$\vec{J} = \vec{L} + \vec{S}$$

- A charmed-strange meson (D_{sJ}) composes of a *c* and a *s* quarks.
- ♦ J is a good quantum number. j, the light quark angular momentum would conserve if c quark were infinitely massive. The finite mass results in that c spin couples with j, causes mass splitting of doublet.
- ♦ The lightest D_{sJ} mesons are the S-wave states: ${}^{2S+1}L_{J} = {}^{1}S_{0} (J^{P}=0^{-}) \& {}^{3}S_{1} (1^{-}),$ with j=1/2.
- ♦ The P-wave D_s mesons can be considered as j=1/2 doublet and j=3/2 doublet: ${}^{3}P_{0}(0^{+}) \& {}^{3}P_{2}(2^{+})$ are j=1/2 & j=3/2respectively. ${}^{1}P_{1}(1^{+}) \& {}^{3}P_{1}(1^{+})$ are mixtures of j=1/2 & j=3/2.

10/15/03

Brief History of D_{sJ} Discoveries Prior to 2003

Jianchun (JC) Wang

10/15/03

- All 4 discovered states are very narrow.
 - ✓ D_s through weak decay.
 - $\checkmark D_{S}^{*} \rightarrow D_{S}^{} \gamma \& D_{S}^{} \pi^{0}.$
 - ✓ D_{s1}(2536) is a member of j=3/2 doublet (may include small admixture of j=1/2). It decays to j=1/2 in D-wave.
 - ✓ D_{sJ}(2573) decays also in D-wave.
- How about the other two missing states?

3

Theoretical Prediction

- Potential models predict the mass and width of charm mesons (e.g. DiPierro & Eichten), which worked quite well with D and D_{sJ} mesons that were already known.
- The j=1/2 doublet 0⁺ & 1⁺ were predicted to be massive enough to decay into DK and D*K respectively via S-wave. So the widths were expected to be broad.
- Although there were predictions of lower mass, not much attention was paid.
- Virtually "everyone" believed that D^(*)K were the modes to look at, and they were difficult to be seen due to the width.

BaBar Discovered $D_{S}(2317)$

BaBar observed a $D_{s}\pi^{0}$ resonance at 2.317 GeV, with $P(D_{s}\pi^{0}) > 3.5$ GeV. Its width is consistent with the detector resolution. The spin parity is possibly J^P=0⁺. (hep-ex/0304021)

Could it be the missing $0^+ D_s$?

CLEO Confirmed D_S(2317)

 $<\Delta M> = 349.4 \pm 1.0 \text{ MeV}$ $\sigma = 8.0 \pm 1.3 \text{ MeV}$ $P(D_s \pi^0) > 3.5 \text{ GeV}$

CLEO quickly confirmed the narrow resonance at 2317 MeV. They noticed a slightly broader width than detector resolution (6 MeV).

(hep-ex/0305100)

10/15/03

CLEO Discovered D_S(2460)

 $<\Delta M> = 349.8 \pm 1.3 \text{ MeV}$ $\sigma = 6.1 \pm 1.0 \text{ MeV}$ $P(D_s * \pi^0) > 3.5 \text{ GeV}$

CLEO observed a significant peak in $D_s^*\pi^0$ spectrum at ~2.46 GeV. Could it be pure reflection of $D_s(2317)$?

There is a small peak in the normalized D_s^* sidebands; it accounts for only 20% of the signal.

Cross-feed of Two D_{sJ} Mesons

	CLEO data	MC:	MC:
		$D_s(2460) \rightarrow D_s * \pi^0$	$D_s(2317) \rightarrow D_s \pi^0$
Reconstruct	σ=6.1±1.0 MeV	σ=6.6±0.5 MeV	Pick up a random γ
as $D_s * \pi^0$	N=55±10	Eff. $\epsilon_0 = 5.7\%$	$\sigma = 14.9 \pm 0.6 \text{ MeV}$
			$\epsilon = 0.09 \times \epsilon_1 \ (\sigma = 6.1)$
Reconstruct	σ=8.0±0.3 MeV	Neglect the γ	σ=6.0±0.3 MeV
as $D_s \pi^0$	N=190±19	σ=14.9±0.4 MeV	Eff. $\epsilon_1 = 9.7\%$
		$\epsilon = 0.84 \times \epsilon_0 \ (\sigma = 8.0)$	

 $D_{s}(2317)$ signal = 155 ± 23 (+~18% feed-down) $\overline{\}$ consistent with double Gaussians fit.

 $D_{s}(2460)$ signal = 41 ± 12 (+ ~25% feed-up) $\overline{\}$ consistent with fit to sideband subtracted spectrum.

Belle Confirmed Both States

Feed-up from $D_s(2317) \sim 30\%$

10/15/03

BaBar Confirmed $D_{S}(2460)$

♦ After careful study of the cross-feed, BaBar confirmed the existence of $D_s(2460)$.

♦ Feedup rate at BaBar as a fraction of the 2460 signal size is ~50% compared with CLEO (~25%) & Belle (~30%).

Mass and Width of The New States

$$\Delta M_{2317} - \Delta M_{2460} = 2.1 \pm 1.4 \text{ MeV}$$
 Width $\Gamma < 7$ MeV (both states) at 90% C.L. by CLEO

Possible Explanations

Several possible explanations appeared after the discovery, some are quite exotic.

- Sarnes, Close & Lipkin: DK molecule. (*hep-ph/0305025*)
- Szczepaniak: $D\pi$ atom. (*PLB 567 (2003),23*)
- Several authors: four quark particle. (Cheng & Hou, PLB 566(2003)193; Terasaki, PRD68(2003) 011501; Nussinov, hep-ph/0306187)
- Van Beveran & Rupp: use a unitarized meson model to explain the low mass as a kind of threshold effect. (*hep-ph/0305035*)
- Cahn & Jackson: use non-relativistic vector and scalar exchange force. (hep-ph/0305012)

 \diamond

Search For $D_S^{(*)+}\pi^{\pm}$

 $\frac{\boldsymbol{s}(X \to D_{s}^{*+} \boldsymbol{p}^{-})}{\boldsymbol{s}(D_{s}(2460) \to D_{s}^{*+} \boldsymbol{p}^{0})} < 0.12 \quad (90\% \ CL)$

Atomic or molecular explanations are not ruled out.

10/15/03

Another Possible Explanation

- ♦ $D_s(2317)$ and $D_s(2460)$ fit in well the quark model as ordinary 0⁺ and 1⁺ D_{sJ} mesons except for maybe the masses.
- ♦ Bardeen, Eichten & Hill (hep-ph/0305049) couple chiral perturbation theory with a quark model representing HQET. They infer that the D_s(2317) is the 0⁺ state, and predict the existence of the 1⁺ partner. The mass splitting between the partners is identical to that between 0⁻ and 1⁻: M(1⁺) – M(0⁺) = M(1⁻) – M(0⁻).
- ♦ $D_s(2317)$ and $D_s(2460)$ are below DK and D*K thresholds. The strong channel to $D_s\pi^0$ and $D_s^*\pi^0$ are isospin suppressed. Thus the widths are very narrow.
- ♦ The measurement $(M(1^+) M(1^-) \approx M(0^+) M(0^-) \approx 350 \text{ MeV})$ backs up the prediction.
- ♦ Interesting lattice QCD results: $M(0^+) M(0^-) = 370(20)$ MeV, $M(1^+) - M(1^-) = 388$ (27) MeV. (Lepage LP2003)

Search For Other Modes

Decay Channel		Possible J ^P of D _{sJ}	CLEO Ratio (90% C.L.)	Belle Ratio (90% C.L.)	BEH prediction	
	$D_s \pi^0$	0- 0-	0+, 1-	≡1	≡ 1	≡1
D_s	$D_s \pi^+ \pi^-$	0- 0- 0-	1-,	< 0.019		0
(231	$D_s \gamma$	0- 1-	1-	< 0.052	< 0.05 (C)	0
(7)	$\mathrm{D_s}^* \pi^0$	1- 0-	1-	< 0.11		0 <
	$D_s^* \gamma$	1- 1-	0+, 1-	< 0.059		0.08
	$D_s^* \pi^0$	1- 0-	1+, 1-, 0-	≡1	≡1	≡1
	$D_s^* \gamma$	1- 1-	1+, 1-, 0-	< 0.16	—	0.22
	$D_s \pi^0$	0- 0-	0+, 1-	Not seen	_	0
) _s (24	$D_s \pi^+ \pi^-$	0- 0- 0-	1+, 1-, 0-	< 0.08	_	0.20
60)	$D_s \gamma$	0- 1-	1+, 1-, 0-	< 0.49	0.65±0.15±0.15(C)	0.24
					$0.38\pm0.11\pm0.04$ (B)	
					0.44±0.09±0.04(A)	
	D _s (2317) γ	(0+) 1-	1+, 1-	< 0.58		0.13

10/15/03

Factorization Mystery

B mode	D _{sJ} mode	B(10 ⁻⁴)
D D _{sJ} (2317)	$D_s \pi^o$	$8.5^{+2.6}_{-1.9} \pm 2.6$
D D _s (2460)	$D_S^* \pi^o$	$17.8^{+4.5}_{-3.9}\pm 5.3$
D D _s (2460)	D _s γ	$6.7^{+1.3}_{-1.2}\pm2.0$
D D _s		~1%

♦ Factorization implies the branching fractions be similar to $B \rightarrow DD_S$. The measurements are a factor of ~10 lower than expectations. (Predictions assume that $f_{D_{sJ}} \approx f_{D_S}$)

Four-quark state or molecule would have B consistent with measurement. (Chen & Li hep-ph/0307075; Datta & O'donnel hep-ph/0307106; Cheng & Hou hep-ph/0305038)

The nature of these two states are not totally settled yet. Although the normal D_s meson explanation is favored. More experimental measurements and theoretical ideas are needed to reveal their true identities.

Summary

- > BaBar discovered a narrow $D_s \pi^0$ resonance at ~2.32 GeV.
- > CLEO discovered a narrow $D_s^* \pi^0$ resonance at ~2.46 GeV.
- Both resonances are confirmed.
- > Belle observed both resonances in B decays. They also observed the radiative decay ($D_S \gamma$) of second resonance.
- > Upper limits have been established in other modes.
- > The two states are favored to be j=1/2 doublet 0⁺ and 1⁺ D_{sJ} states. Other explanations are not ruled out.

Two new states were discovered.

We are not completely sure if they are pure charmed-strange mesons.

They remain Charming and Strange.

10/15/03

Backup slides

BaBar Discovered $D_{s}(2317)$

- \diamond BaBar observed a D_s π^0 resonance at 2.317 GeV, with $P(D_s\pi^0) > 3.5$ GeV. Its width is consistent with detector resolution. The spin parity possibly is $J^{P}=0^{+}$. (hep-ex/0304021).
- \diamond They also noticed a peak at 2.46 GeV. "This mass corresponds to the overlap region of the $D_s^* \rightarrow D_s \gamma$ and $D_s(2317) \rightarrow D_s \pi^0$ signal bands that, because of the small width of both mesons, produces a narrow peak in the $D_s \pi^0 \gamma$ mass distribution that survives a D_S^{*} selection."

10/15/03

10/15/03

Production Rate of D_{sJ} Mesons

	Yield (P>3.5)	Efficiency (%)	Production Ratio
$D_s(2460) \rightarrow D_s^* \pi^0 \rightarrow (D_s \gamma) \pi^0$	41 ± 11	6.33±0.21	$(3.25 \pm 0.89) \times 10^{-2}$
$D_s(2317) \rightarrow D_s \pi^0$	155 ± 23	9.76±0.19	$(7.93 \pm 1.18) \times 10^{-2}$
$D_s^*(2112) \rightarrow D_s \gamma$	2591 ± 69	22.0±0.6	$(5.89 \pm 0.26) \times 10^{-1}$
D _s (1969)	9263±123	46.3±0.9	1

 \diamond The final D_{sJ} candidates are required to be P>3.5 GeV.

♦ D_s is reconstructed in $D_s^+ \rightarrow \phi \pi^+$, $\phi \rightarrow K^+K^-$ mode. The efficiency is the value in the table times BR of the decay chain listed.