QCD, Factorization, and the Soft-Collinear Effective Theory

lain W. Stewart MIT

The 9th International Conference on
B Physics at Hadron Machines, Oct. 14-18
(Beauty 2003)

Outline

- Motiviation, QCD, Expansion Parameters

Analogy with HQET

- What is the Soft-Collinear Effective Theory (SCET)?

Degrees of freedom, Physical picture, Symmetries

- B-Physics Applications: $\left(m_{B} \simeq 5.3 \mathrm{GeV}\right)$
$B \rightarrow D \pi$, Color-Suppressed Decays ($\bar{B}^{0} \rightarrow D^{0} \pi^{0}, \ldots$)
Heavy-to-Light Form factors
Status of $B \rightarrow M M$ decays ($B \rightarrow \pi \pi, \ldots$)
- Outlook and Issues

Summary from Beauty-SCET Workshop

Motivation

b-Hadrons:

- Laboratory for EW, new physics, \& QCD
- The lightest B 's decay weakly to many channnels

$$
\begin{aligned}
& B \rightarrow D^{(*)} e \nu, B \rightarrow D_{1,2}^{(*)} e \nu, B \rightarrow \pi e \nu, B \rightarrow \rho e \nu, \\
& B \rightarrow K^{*} \gamma, B \rightarrow K e^{+} e^{-}, B \rightarrow \rho \gamma, \\
& B \rightarrow \tau \nu, B \rightarrow \gamma e \nu, B \rightarrow e^{+} e^{-} e \nu, \\
& B \rightarrow D \pi, B \rightarrow \pi \pi, B \rightarrow K \pi, B \rightarrow J / \Psi K_{S}, \\
& B \rightarrow X_{u} e \nu, B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \nu \bar{\nu},
\end{aligned}
$$

(Repeat for $B_{s}, \Lambda_{b}, \ldots$)
\triangleright Need to understand (elliminate) hadronic uncertainties from QCD

Scales

quarks	mass	light
u	$\sim 4 \mathrm{Mev}$	
d	$\sim 7 \mathrm{MeV}$	
S	$\sim 120 \mathrm{MeV}$	
c	$\sim 1.4 \mathrm{GeV}$	$\Longleftarrow \Lambda$
b	$\sim 4.5 \mathrm{GeV}$	\} heavy
t	174 GeV	

QCD

$\alpha_{s}(\mu), \mu$ resolution
$\alpha_{s}(\Lambda)$ non-perturbative \rightarrow long distance
$\alpha_{s}\left(m_{b}\right)$ perturbative \rightarrow short distance

In full QCD usually we can not predict amplitudes with small uncertainties in a model independent way

Need Expansion Parameters

(If we use a model then we can not even estimate the uncertainties reliably)

Use Effective Field Theories

Use Effective Field Theories: Separate physics at different momentum scales

Expansion Parameters

(1) Electroweak Hamiltonian

$$
m_{b} / m_{W} \ll 1
$$

(2) Heavy Quark Effective Theory (HQET)

$$
\Lambda / m_{b} \ll 1
$$

(3) $\mathrm{SU}(3)$, Chiral Perturbation Theory

$$
m_{u, d, s} / \Lambda \ll 1
$$

(4) Soft-Collinear Effective Theory (SCET)

$$
\Lambda / Q \ll 1, \quad Q=\left\{m_{b}, E_{H}\right\}
$$

Depending on the observable one or more of these may be necessary
(5) Lattice QCD

$$
a / r \ll 1, r^{3} / V \ll 1
$$

Electroweak Hamiltonian

1) Integrating out the $W, t\left(m_{W}, m_{t} \gg m_{b}\right)$:

$$
H_{W}=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda^{i} C_{i}(\mu) O_{i}(\mu)
$$

$$
O_{1}=(\bar{u} b)_{V-A}(\bar{d} u)_{V-A}
$$

$$
O_{2}=\left(\bar{u}_{i} b_{j}\right)_{V-A}\left(\bar{d}_{j} u_{i}\right)_{V-A}
$$

$$
O_{3}=(\bar{d} b)_{V-A} \sum_{q}(\bar{q} q)_{V-A}
$$

$$
O_{4,5,6}=\ldots
$$

$$
O_{7 \gamma, 8 G}=\ldots
$$

$$
O_{7, \ldots, 10}^{e w}=\ldots
$$

$$
O_{\Delta B=2}=(\bar{d} b)_{V-A}(\bar{d} b)_{V-A}
$$

Operators come with different CKM elements, $\lambda^{1}=V_{u b} V_{u d}^{*}, \ldots$

HQET: $B \rightarrow X_{c} \ell \bar{\nu}$

Inclusive Decay: OPE in Λ / m_{b}

- $m_{b} \rightarrow \infty$ is free quark decay, $\alpha_{s}\left(m_{b}\right)$ corrections computable
- No Λ / m_{b} corrections \rightarrow HQET gives 0 at this order
- At Λ^{2} / m_{b}^{2} have dependence on λ_{1}, λ_{2} defined in HQET

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2}\left\langle B_{v}\right| \bar{h}_{v} D_{\perp}^{2} h_{v}\left|B_{v}\right\rangle \\
\lambda_{2} & =\ldots
\end{aligned}
$$

HQET is simpler than QCD \rightarrow Spin-Flavor Symmetry
Uncertainties suppressed by Λ / m_{b}

HQET: $B \rightarrow X_{c} \ell \bar{\nu}$

Inclusive Decay: OPE in Λ / m_{b}

- Fit moments to simultaneously extract $\left|V_{c b}\right|, m_{b}(\bar{\Lambda}), \lambda_{1}, \lambda_{2}$

Example: CLEO

$$
\left|V_{c b}\right|=(40.8 \pm 0.6 \pm 0.9) \times 10^{-3}
$$

Soft-Collinear Effective Theory

Many processes have energetic hadrons, $Q \gg \Lambda$, where HQET does not apply

Soft-Collinear Effective Theory

C. Bauer, S. Fleming, M. Luke
C. Bauer, S. Fleming, D. Pirjol, I.S.
C. Bauer, I.S.
C. Bauer, D. Pirjol, I.S.
hep-ph/0005275 (PRD)
hep-ph/0011336 (PRD)
hep-ph/0107001 (PLB)
hep-ph/0109045 (PRD)

Builds on earlier work:
Hard Exclusive: Brodsky, Lepage, ...
Jet physics: Collins, Soper, Sterman, Korchemsky, ...
B-physics Factorization: Dugan, Grinstein, Beneke, Buchalla, Neubert, Sachrajda, ...

Soft-Collinear Effective Theory

Introduce fields for infrared degrees of freedom (in operators)

modes	$p^{\mu}=(+,-, \perp)$	p^{2}	fields
collinear	$Q\left(\lambda^{2}, 1, \lambda\right)$	$Q^{2} \lambda^{2}$	ξ_{n}, A_{n}^{μ}
soft	$Q(\lambda, \lambda, \lambda)$	$Q^{2} \lambda^{2}$	q_{s}, A_{s}^{μ}
usoft	$Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$	$Q^{2} \lambda^{4}$	$q_{u s}, A_{u s}^{\mu}$

Offshell modes with $p^{2} \gg Q^{2} \lambda^{2}$ are integrated out (in coefficients)

Soft-Collinear Effective Theory

Introduce fields for infrared degrees of freedom (in operators)

modes	$p^{\mu}=(+,-, \perp)$	p^{2}	fields
collinear soft usoft	$Q\left(\lambda^{2}, 1, \lambda\right)$	$Q^{2} \lambda^{2}$	ξ_{n}, A_{n}^{μ}
	$Q(\lambda, \lambda, \lambda)$	$Q^{2} \lambda^{2}$	q_{s}, A_{s}^{μ}
	$Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$	$Q^{2} \lambda^{4}$	$q_{u s}, A_{u s}^{\mu}$

Pion has: $\quad p_{\pi}^{\mu}=(2.3 \mathrm{GeV}) n^{\mu}=Q n^{\mu}$

$$
n^{2}=\bar{n}^{2}=0,\left(\bar{n} \cdot p_{\pi}=2 Q\right)
$$

pion in rest frame has constituent momenta:

$$
\left(p^{+}, p^{-}, p^{\perp}\right) \sim(\Lambda, \Lambda, \Lambda)
$$

boosting gives collinear constituents:

$$
\left(p^{+}, p^{-}, p^{\perp}\right) \sim\left(\frac{\Lambda^{2}}{Q}, Q, \Lambda\right) \sim Q\left(\lambda^{2}, 1, \lambda\right) \quad \lambda \ll 1
$$

Soft-Collinear Effective Theory

Introduce fields for infrared degrees of freedom (in operators)

modes	$p^{\mu}=(+,-, \perp)$	p^{2}	fields
collinear	$Q\left(\lambda^{2}, 1, \lambda\right)$	$Q^{2} \lambda^{2}$	ξ_{n}, A_{n}^{μ}
soft	$Q(\lambda, \lambda, \lambda)$	$Q^{2} \lambda^{2}$	q_{s}, A_{s}^{μ}
usoft	$Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$	$Q^{2} \lambda^{4}$	$q_{u s}, A_{u s}^{\mu}$

B, D are soft, π collinear
$\mathcal{L}=\mathcal{L}_{s}^{(0)}+\mathcal{L}_{c}^{(0)}$
Factorization if $\mathcal{O}=O_{1} \times O_{2}$

Soft-Collinear Effective Theory

Introduce fields for infrared degrees of freedom (in operators)

modes	$p^{\mu}=(+,-, \perp)$	p^{2}	fields
collinear	$Q\left(\lambda^{2}, 1, \lambda\right)$	$Q^{2} \lambda^{2}$	ξ_{n}, A_{n}^{μ}
soft	$Q(\lambda, \lambda, \lambda)$	$Q^{2} \lambda^{2}$	q_{s}, A_{s}^{μ}
usoft	$Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$	$Q^{2} \lambda^{4}$	$q_{u s}, A_{u s}^{\mu}$

Typically either:
SCET $_{\text {I }} \quad \lambda=\sqrt{\Lambda / Q} \longrightarrow \begin{aligned} & \text { usoft } \quad p^{\mu} \sim \Lambda \\ & \text { collinear } p_{c}^{2} \sim Q \Lambda, \text { jets }\end{aligned}$

SCET $_{\text {II }} \quad \lambda=\Lambda / Q \quad \longrightarrow$ soft $\quad p^{\mu} \sim \Lambda$
collinear $p_{c}^{2} \sim \Lambda^{2}$, exclusive

Soft-Collinear Effective Theory

Introduce fields for infrared degrees of freedom (in operators)

modes	$p^{\mu}=(+,-, \perp)$	p^{2}	fields
collinear	$Q\left(\lambda^{2}, 1, \lambda\right)$	$Q^{2} \lambda^{2}$	ξ_{n}, A_{n}^{μ}
soft	$Q(\lambda, \lambda, \lambda)$	$Q^{2} \lambda^{2}$	q_{s}, A_{s}^{μ}
usoft	$Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$	$Q^{2} \lambda^{4}$	$q_{u s}, A_{u s}^{\mu}$

Symmetries

1) Gauge Symmetry, Collinear, Soft, Usoft
2) Helicity, Spinor Reduction, $\not \hbar \xi_{n}=0$
3) Reparameterization Invariance, n, \bar{n}
4) C,P,T in different sectors

SCET

- gives a systematic expansion in $\lambda \sim \Lambda_{\mathrm{QCD}} / Q$
- model independent description of power corrections can estimate uncertainties
- make symmetries explicit, understand factorization in a universal way

Determine quantities that are short and long distance, calculate short distance coefficients
Proof of Factorization means Known to be Model Independent once hadronic parameters are determined

- $\operatorname{SCET}_{\mathrm{I}}$ has hard coefficients $C(\overline{\mathcal{P}}, \mu)$ with $\mu^{2} \sim Q^{2}$, Wilson lines W, Y
- $\operatorname{SCET}_{\text {II }}$ has jet coefficients J with $\mu^{2} \sim Q \Lambda$, Wilson lines W, S

Hadronic Parameters

Define universal hadronic parameters, exploit symmetries

Process	Degrees of Freedom $\left(p^{2}\right)$	Non-Pert. functions
$\bar{B}^{0} \rightarrow D^{+} \pi^{-}, \ldots$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right)$	$\xi(w), \phi_{\pi}$
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}, \ldots$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right), \mathrm{c}(Q \Lambda)$	$S\left(k_{j}^{+}\right), \phi_{\pi}$
$B \rightarrow X_{s}^{e n d p t} \gamma$,	$\mathrm{c}(Q \Lambda)$, us $\left(\Lambda^{2}\right)$	$f\left(k^{+}\right)$
$B \rightarrow X_{u}^{e n d p t} \ell \nu$		
$B \rightarrow \pi \ell \nu, \ldots$	$\mathrm{c}(Q \Lambda), \mathrm{s}\left(\Lambda^{2}\right), \mathrm{c}\left(\Lambda^{2}\right)$	$\phi_{B}\left(k^{+}\right), \phi_{\pi}(x), \zeta_{\pi}(E)$
$B \rightarrow \gamma \ell \nu$	$\mathrm{c}(Q \Lambda)$, us $\left(\Lambda^{2}\right)$	ϕ_{B}
$B \rightarrow \pi \pi$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right), \mathrm{c}(Q \Lambda)$	$\phi_{B}, \phi_{\pi}, \zeta_{\pi}(E)$
$B \rightarrow K^{*} \gamma$	$\mathrm{c}(Q \Lambda), \mathrm{s}\left(\Lambda^{2}\right), \mathrm{c}\left(\Lambda^{2}\right)$	$\phi_{B}, \phi_{K}, \zeta_{K^{*}}^{\perp}(E)$
$e^{-} p \rightarrow e^{-} X$	$\mathrm{c}\left(\Lambda^{2}\right)$	$f_{i / p}(\xi), f_{g / p}(\xi)$
$e^{-} \gamma \rightarrow e^{-} \pi^{0}$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right)$	ϕ_{π}
$\gamma^{*} M \rightarrow M^{\prime}$	$\mathrm{c}\left(\Lambda^{2}\right), \mathrm{s}\left(\Lambda^{2}\right)$	$\phi_{M}, \phi_{M^{\prime}}$

Hadronic Parameters

SCET Authors (in no particular order):
S.Mantry, C.Bauer, D.Pirjol, I.S., S.Fleming, M.Luke, I.Rothstein, M.Beneke, T.Feldmann, M.Diehl, A.Chapovsky, Descotes-Genon, J.Chay, C.Kim, G.Buchalla, C.Sachrajda, E.Lunghi, D.Wyler, S.Bosch, R.Hill, B.Lange, M.Neubert, T.Becher, M.Wise, A.Manohar, T.Mehen, A.Leibovich, Z.Ligeti, ...

Hadronic Parameters

Example: $\bar{B}^{0} \rightarrow D^{+} \pi^{-}, B^{-} \rightarrow D^{0} \pi^{-}$

$$
\langle D \pi| \bar{c} b \bar{u} d|B\rangle=N \xi\left(v \cdot v^{\prime}\right) \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)
$$

where

$$
\begin{aligned}
\left\langle\pi_{n}\right| \bar{\xi}_{n, p^{\prime}}^{(0)} W^{(0)} C_{0}\left(\overline{\mathcal{P}}_{+}\right) W^{(0) \dagger} \xi_{n, p}^{(0)}|0\rangle & =\frac{i}{2} f_{\pi} E_{\pi} \int d x C\left[2 E_{\pi}(2 x-1)\right] \phi_{\pi}(x) \\
\left\langle D_{v^{\prime}}\right| \bar{h}_{v^{\prime}} \Gamma_{h} h_{v}\left|B_{v}\right\rangle & =\xi\left(v \cdot v^{\prime}\right)
\end{aligned}
$$

$\mathrm{LO}=\lambda^{5}$ graphs
$Q=m_{b}, m_{c}, E_{\pi} \gg \Lambda$, corrections will be $\Lambda / m_{c} \sim 30 \%$
Example 2: $B \rightarrow X_{s} \gamma$ shape function $\quad f\left(l^{+}\right)=\langle B| \bar{h}_{v} \delta\left(\right.$ in $\left.\cdot D-l^{+}\right) h_{v}|B\rangle$

$B \rightarrow D^{(*)} X$ phenomenology

Type	Decay	$\operatorname{Br}\left(10^{-3}\right)$	Decay	$\operatorname{Br}\left(10^{-3}\right)$
I	$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	2.68 ± 0.29^{a}	$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	2.76 ± 0.21
III	$B^{-} \rightarrow D^{0} \pi^{-}$	4.97 ± 0.38^{a}	$B^{-} \rightarrow D^{* 0} \pi^{-}$	4.6 ± 0.4
II	$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$	0.292 ± 0.045^{b}	$\bar{B}^{0} \rightarrow D^{* 0} \pi^{0} b$	0.25 ± 0.07
I	$\bar{B}^{0} \rightarrow D^{+} \rho^{-}$	7.8 ± 1.4	$\bar{B}^{0} \rightarrow D^{*+} \rho^{-}$	6.8 ± 1.0^{c}
III	$B^{-} \rightarrow D^{0} \rho^{-}$	13.4 ± 1.8	$B^{-} \rightarrow D^{* 0} \rho^{-}$	9.8 ± 1.8^{c}
II	$\bar{B}^{0} \rightarrow D^{0} \rho^{0}$	0.29 ± 0.11^{d}	$\bar{B}^{0} \rightarrow D^{* 0} \rho^{0}$	<0.56

PDG or $a, b, c, d=C L E O, b=B E L L E$
New BaBar numbers (hep-ex/0310028, yesterday):
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$
$0.29 \pm 0.02 \pm 0.03$
$\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}$
$0.29 \pm 0.04 \pm 0.05$

$B \rightarrow D^{(*)} X$ phenomenology

Type	Decay	$\operatorname{Br}\left(10^{-3}\right)$	Decay	$\operatorname{Br}\left(10^{-3}\right)$
I	$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	2.68 ± 0.29^{a}	$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	2.76 ± 0.21
III	$B^{-} \rightarrow D^{0} \pi^{-}$	4.97 ± 0.38^{a}	$B^{-} \rightarrow D^{* 0} \pi^{-}$	4.6 ± 0.4
II	$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$	0.292 ± 0.045^{b}	$\bar{B}^{0} \rightarrow D^{* 0} \pi^{0} b$	0.25 ± 0.07
I	$\bar{B}^{0} \rightarrow D^{+} \rho^{-}$	7.8 ± 1.4	$\bar{B}^{0} \rightarrow D^{*+} \rho^{-}$	6.8 ± 1.0^{c}
III	$B^{-} \rightarrow D^{0} \rho^{-}$	13.4 ± 1.8	$B^{-} \rightarrow D^{* 0} \rho^{-}$	9.8 ± 1.8^{c}
II	$\bar{B}^{0} \rightarrow D^{0} \rho^{0}$	0.29 ± 0.11^{d}	$\bar{B}^{0} \rightarrow D^{* 0} \rho^{0}$	<0.56

- $\bar{B}^{0} \rightarrow D^{(*)+} P^{-}$decays agree within errors
- $\bar{B}^{0} \rightarrow D^{(*) 0} \pi^{0}, \bar{B}^{0} \rightarrow D^{(*) 0} \rho^{0}$, small as expected (0 at LO)
- $\sim 20-30 \%$ power corrections for $A\left(B^{-} \rightarrow D^{0} P^{-}\right) / A\left(\bar{B}^{0} \rightarrow D^{+} P^{-}\right)$ Nonzero strong phase, $\delta \sim 30^{\circ}$

$B \rightarrow D \pi$

$$
\begin{aligned}
& O^{0}=(\bar{c} b)_{V-A}(\bar{d} u)_{V-A} \\
& O^{8}=\left(\bar{c} T^{A} b\right)_{V-A}\left(\bar{d} T^{A} u\right)_{V-A}
\end{aligned}
$$

Large N_{c} - not very predictive:

$$
\left(N_{c}\right)^{0} \quad 1 / N_{c}
$$

$$
1 / N_{c}
$$

$B \rightarrow D \pi$

$$
\begin{aligned}
& O^{0}=(\bar{c} b)_{V-A}(\bar{d} u)_{V-A} \\
& O^{8}=\left(\bar{c} T^{A} b\right)_{V-A}\left(\bar{d} T^{A} u\right)_{V-A}
\end{aligned}
$$

Naive Factorization - too small:
$A\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right) \sim a_{2}\left\langle\pi^{0}\right|(\bar{d} b)\left|\bar{B}^{0}\right\rangle\left\langle D^{0}\right|(\bar{c} u)|0\rangle$

$B \rightarrow D \pi$

$$
\begin{aligned}
O^{0} & =(\bar{c} b)_{V-A}(\bar{d} u)_{V-A} \\
O^{8} & =\left(\bar{c} T^{A} b\right)_{V-A}\left(\bar{d} T^{A} u\right)_{V-A}
\end{aligned}
$$

QCDF - $D^{0} \pi^{0}$ is non-factorizable channel pQCD - predicted with expansion in m_{c} / m_{b}

Factorization for Color-Suppressed Decays

$$
\bar{B}^{0} \rightarrow D^{(*) 0} M^{0}
$$

- SCET factorization mechanism for color suppressed channels still predictive

Factorization for Color-Suppressed Decays

$$
\begin{aligned}
& \bar{B}^{0} \rightarrow D^{+} \pi^{-} \\
& B^{-} \rightarrow D^{0} \pi^{-}
\end{aligned}
$$

$$
\bar{B}^{0} \rightarrow D^{+} \pi^{-}
$$

$B^{-} \rightarrow D^{0} \pi^{-}$
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$

$$
\bar{B}^{0} \rightarrow D^{0} \pi^{0}
$$

$$
\begin{aligned}
A\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right) & =\frac{1}{\sqrt{3}} A_{3 / 2}+\sqrt{\frac{2}{3}} A_{1 / 2}=T+E \\
A\left(B^{-} \rightarrow D^{0} \pi^{-}\right) & =\sqrt{3} A_{3 / 2}=T+C \\
A\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right) & =\sqrt{\frac{2}{3}} A_{3 / 2}-\frac{1}{\sqrt{3}} A_{1 / 2}=\frac{1}{\sqrt{2}}(C-E) \equiv A_{0}
\end{aligned}
$$

Mantry, Pirjol, I.S.
"Exchange"

Take $E_{\pi} \gg \Lambda_{\mathrm{QCD}}$

Mediated by a single class of $\operatorname{SCET}_{\mathrm{I}}$ operators $T\left\{\mathcal{O}^{(0)}, \mathcal{L}_{\xi q}^{(1)}, \mathcal{L}_{\xi q}^{(1)}\right\}$
(a)

(b)

When matched onto $\operatorname{SCET}_{\text {II }}$ we find a factorization formula ($M=\pi, \rho$):
$A_{00}^{D^{(*)}}=N_{0}^{(*)} \int d x d z d k_{1}^{+} d k_{2}^{+} T_{L \mp R}^{(i)}(z) J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right) S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right) \phi_{M}(x)$
two new non-perturbative soft functions

$$
(i=0,8)
$$

$$
\begin{aligned}
& O^{(0,8)}=\left[\left(\bar{h}_{v^{\prime}}^{(c)} S\right) \Gamma^{h}\left\{1, T^{a}\right\}\left(S^{\dagger} h_{v}^{(b)}\right)(\bar{d} S)_{k_{1}^{+}} \Gamma_{s}\left\{1, T^{a}\right\}\left(S^{\dagger} u\right)_{k_{2}^{+}}\right] \\
& \left\langle D^{(*) 0}\right| O^{(0,8)}\left|\bar{B}^{0}\right\rangle \rightarrow S^{(0,8)}\left(k_{1}^{+}, k_{2}^{+}\right) \quad \text { same for } D \text { and } D^{*}
\end{aligned}
$$

Results and Predictions

- Find both C and E suppressed by Λ / Q relative to T
- $S\left(k_{i}^{+}\right)$is complex, gives non-perturbative strong phase which is independent of M and choice of D vs. D^{*}

Predict

equal strong phases $\delta^{D}=\delta^{D^{*}}$ equal amplitudes $A_{0}^{D}=A_{0}^{D *}$
corrections to this are $\alpha_{s}\left(m_{b}\right), \Lambda / Q$

Expt (pdg average):

$$
\begin{array}{ll}
\operatorname{Br}\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right)=(0.29 \pm 0.05) \times 10^{-3}, & \delta^{D \pi}=30^{\circ}+8^{\circ} \\
\operatorname{Br}\left(\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}\right)=(0.25 \pm 0.07) \times 10^{-3}, & \delta^{D^{*} \pi}=30^{\circ} \pm 6^{\circ}
\end{array}
$$

Test and Predictions

$$
\begin{aligned}
R_{I} & =\frac{A_{1 / 2}}{\sqrt{2} A_{3 / 2}} \\
\delta & =\arg \left(A_{1 / 2} A_{3 / 2}^{*}\right)
\end{aligned}
$$

Also predict (not post-dict):

$$
R_{0}^{\rho}=\frac{A\left(\bar{B}^{0} \rightarrow D^{* 0} \rho^{0}\right)}{A\left(\bar{B}^{0} \rightarrow D^{0} \rho^{0}\right)}=1
$$

Test and Predictions

$$
\begin{aligned}
R_{I} & =\frac{A_{1 / 2}}{\sqrt{2} A_{3 / 2}} \\
\delta & =\arg \left(A_{1 / 2} A_{3 / 2}^{*}\right)
\end{aligned}
$$

Also predict (not post-dict):

$$
\begin{array}{rlrl}
R_{0}^{K^{-}} & = & \frac{A\left(\bar{B}^{0} \rightarrow D_{s}^{*} K^{-}\right)}{A\left(\bar{B}^{0} \rightarrow D_{s} K^{-}\right)}=1, & R_{0}^{K_{\|}^{*-}}=\frac{A\left(\bar{B}^{0} \rightarrow D_{s}^{*} K_{\|}^{*-}\right)}{A\left(\bar{B}^{0} \rightarrow D_{s} K_{\|}^{*-}\right)}=1 \\
R_{0}^{K^{0}} & =\frac{A\left(\bar{B}^{0} \rightarrow D^{0} \bar{K}^{0}\right)}{A\left(\bar{B}^{0} \rightarrow D^{0} \bar{K}^{0}\right)}=1, & R_{0}^{K_{\|}^{* 0}}=\frac{A\left(\bar{B}^{0} \rightarrow D^{* 0} \bar{K}_{\|}^{* 0}\right)}{A\left(\bar{B}^{0} \rightarrow D^{0} \bar{K}_{\|}^{* 0}\right)}=1
\end{array}
$$

More Predictions

More predictions can be made if we expand J in $\alpha_{s}\left(\mu_{0}^{2}=Q \Lambda\right)$

At tree level $T^{(i)}=C^{(i)}=$ constant, $\quad J^{(i)} \sim \frac{\alpha_{s}\left(\mu_{0}\right)}{x k_{1}^{+} k_{2}^{+}}$
so get $\quad A_{00} \propto C^{(i)} \int \frac{S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right)}{k_{1}^{+} k_{2}^{+}} \int \frac{\phi_{\pi}(x)}{x}=s^{\mathrm{eff}}\left(\mu_{0}\right)\left\langle x^{-1}\right\rangle_{\pi}$

More Predictions

More predictions can be made if we expand J in $\alpha_{s}\left(\mu_{0}^{2}=Q \Lambda\right)$

At tree level $T^{(i)}=C^{(i)}=$ constant, $\quad J^{(i)} \sim \frac{\alpha_{s}\left(\mu_{0}\right)}{x k_{1}^{+} k_{2}^{+}}$
so get $\quad A_{00} \propto C^{(i)} \int \frac{S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right)}{k_{1}^{+} k_{2}^{+}} \int \frac{\phi_{\pi}(x)}{x}=s^{\mathrm{eff}}\left(\mu_{0}\right)\left\langle x^{-1}\right\rangle_{\pi}$

- If $\left\langle x^{-1}\right\rangle_{\pi} \simeq\left\langle x^{-1}\right\rangle_{\rho}$ then $\left|r^{D \pi}\right|=\left|r^{D \rho}\right|$

$$
\begin{aligned}
\left|r^{D \pi}\right| & =\frac{\left|A\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right)\right|}{\left|A\left(B^{-} \rightarrow D^{0} \pi^{-}\right)\right|}=0.77 \pm 0.05, \quad\left|r^{D \rho}\right|=0.80 \pm 0.09 \\
\left|r^{D^{*} \pi \pi \pi \pi}\right| & =0.98 \pm 0.27
\end{aligned}
$$

- Also would predict that $\delta^{\rho}=\delta^{\pi}$
- If we fit the complex $s^{\text {eff }}=(428 \pm 48 \pm 100 \mathrm{MeV}) \exp \left(i\left(44^{\circ} \pm 7^{\circ}\right)\right)$ ie natural size, $s^{\text {eff }} \simeq \Lambda_{\mathrm{QCD}}$ from dim. analysis

More Predictions

naive factorization for color suppressed decays

Heavy-to-Light Decays

- Large q^{2} accessible on the Lattice ($B \rightarrow \pi \ell \nu, q^{2} \gtrsim 15 \mathrm{GeV}^{2}$)
- For small $q^{2}, E \gg \Lambda_{\mathrm{QCD}}$ and large energy factorization applies
$B \rightarrow \rho \ell \nu$

Why is it interesting?

- Important ingredient for $B \rightarrow \pi \pi, \pi \rho, \rho \rho$ (CP violation)
- Phenomenology: $\left|V_{u b}\right|, B \rightarrow \rho \gamma, B \rightarrow K^{*} e^{+} e^{-}, \ldots$

Heavy-to-Light Form Factors

pseudoscalar: f_{+}, f_{0}, f_{T}, vector: $V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}$

lain Stewart - p. 20

Form Factor Results

Bauer, Pirjol, I.S.
Beneke, Feldmann

Our result $f(Q)=f^{F}(Q)+f^{N F}(Q)$

$$
\begin{aligned}
f^{F}(Q)= & \frac{f_{B} f_{M} m_{B}}{4 E^{2}} \int_{0}^{1} d z \int_{0}^{1} d x \int_{0}^{\infty} d r_{+} T\left(z, E, m_{b}, \mu_{0}\right) \\
& \times J\left(z, x, r_{+}, E\right) \phi_{M}(x) \phi_{B}^{+}\left(r_{+}\right) \\
f^{\mathrm{NF}}(Q)= & C_{k}\left(E, m_{b}\right) \zeta_{k}\left(Q \Lambda, \Lambda^{2}\right) .
\end{aligned}
$$

$$
p^{2} \sim Q^{2}
$$

result at LO in λ, all orders in α_{s}, where $Q=\left\{m_{b}, E_{M}\right\}$

Results

Pirjol, I.S.

B to pseudoscalar

$$
\begin{aligned}
f_{+} & =T_{\zeta}^{f_{+}} \zeta^{P}+N_{0} \int d \mathcal{M}\left[T_{a}^{f_{+}} J_{a}\left(x, r_{+}\right)+T_{b}^{f_{+}}(z) J_{b}\left(z, x, r_{+}\right)\right] \phi_{P}(x) \phi_{B}^{+}\left(r_{+}\right), \\
\frac{m_{B}}{2 E} f_{0} & =T_{\zeta}^{f_{0}} \zeta^{P}+N_{0} \int d \mathcal{M}\left[T_{a}^{f_{0}} J_{a}\left(x, r_{+}\right)+T_{b}^{f_{0}}(z) J_{b}\left(z, x, r_{+}\right)\right] \phi_{P}(x) \phi_{B}^{+}\left(r_{+}\right), \\
f_{T} & =T_{\zeta}^{f_{T}} \zeta^{P}+N_{0} \int d \mathcal{M}\left[T_{a}^{f_{T}} J_{a}\left(x, r_{+}\right)+T_{b}^{f_{T}}(z) J_{b}\left(z, x, r_{+}\right)\right] \phi_{P}(x) \phi_{B}^{+}\left(r_{+}\right),
\end{aligned}
$$

Results

Pirjol, I.S.

B to vector

$$
\begin{aligned}
V= & T_{\zeta}^{V} \zeta_{\perp}^{V}+N_{\perp} \int d \mathcal{M}\left[T_{a}^{V} J_{a}^{\perp}\left(x, r_{+}\right)+T_{b}^{V}(z) J_{b}^{\perp}\left(z, x, r_{+}\right)\right] \phi_{B}^{+}\left(r_{+}\right) \phi_{\perp}^{V}(x), \\
A_{0}= & T_{\zeta}^{A_{0}} \zeta_{\|}^{V}+N_{\|} \int d \mathcal{M}\left[T_{a}^{A_{0}} J_{a}\left(x, r_{+}\right)+T_{b}^{A_{0}}(z) J_{b}\left(z, x, r_{+}\right)\right] \phi_{B}^{+}\left(r_{+}\right) \phi_{\|}^{V}(x), \\
\frac{m_{B}}{2 E} A_{1}= & T_{\zeta}^{A_{1}} \zeta_{\perp}^{V}+N_{\perp} \int d \mathcal{M}\left[T_{a}^{A_{1}} J_{a}^{\perp}\left(x, r_{+}\right)+T_{b}^{A_{1}}(z) J_{b}^{\perp}\left(z, x, r_{+}\right)\right] \phi_{B}^{+}\left(r_{+}\right) \phi_{\perp}^{V}(x) \\
A_{2}-\frac{m_{B}}{2 E} A_{1}= & \frac{m_{V}}{E} T_{\zeta}^{A_{12}} \zeta_{\|}^{V}+\frac{m_{V}}{E} N_{\|} \int d \mathcal{M}\left[T_{a}^{A_{12}} J_{a}\left(x, r_{+}\right)\right. \\
& \left.+T_{b}^{A_{12}} J_{b}\left(z, x, r_{+}\right)\right] \phi_{B}^{+}\left(l_{+}\right) \phi_{\|}^{V}(x), \\
T_{1}= & T_{\zeta}^{T_{1}} \zeta_{\perp}^{V}+N_{\perp} \int d \mathcal{M}\left[T_{a}^{T_{1}} J_{a}^{\perp}\left(x, r_{+}\right)+T_{b}^{T_{1}}(z) J_{b}^{\perp}\left(z, x, r_{+}\right)\right] \phi_{B}^{+}\left(l_{+}\right) \phi_{\perp}^{V}(x), \\
\frac{m_{B}}{2 E} T_{2}= & T_{\zeta}^{T_{2}} \zeta_{\perp}^{V}+N_{\perp} \int d \mathcal{M}\left[T_{a}^{T_{2}} J_{a}^{\perp}\left(x, r_{+}\right)+T_{b}^{T_{2}}(z) J_{b}^{\perp}\left(z, x, r_{+}\right)\right] \phi_{B}^{+}\left(l_{+}\right) \phi_{\perp}^{V}(x), \\
T_{3}-\frac{m_{B}}{2 E} T_{2}= & \frac{m_{V}}{E} T_{\zeta}^{T_{23}} \zeta_{\|}^{V}+N_{\|} \frac{m_{V}}{E} \int d \mathcal{M}\left[T_{a}^{T_{23}} J_{a}\left(x, r_{+}\right)\right. \\
& \left.+T_{b}^{T_{23}}(z) J_{b}\left(z, x, r_{+}\right)\right] \phi_{B}^{+}\left(l_{+}\right) \phi_{\|}^{V}(x),
\end{aligned}
$$

Implications

- $V=m_{B} A_{1} /(2 E)$ and $T_{1}=m_{B} T_{2} /(2 E)$ by helicity symmetry

Burdman, Hiller

- certain $A_{1,2}$ and $T_{1,2}$ combinations are m_{V} / E suppressed
- goal is to identify processes besides $B \rightarrow \pi \ell \nu$ that depend on same non-perturbative parameters, egs. $B \rightarrow \pi \pi, B \rightarrow \pi \ell^{+} \ell^{-}$, $B \rightarrow \gamma \ell \nu$
- If lattice can get points in the low q^{2} region they can read off important hadronic moments by fitting certain linear combinations

$$
\text { eg. } \quad \frac{V}{T_{\zeta}^{V}}-\frac{T_{1}}{T_{\zeta}^{T_{1}}} \propto \mathcal{T}(E) \frac{\left\langle x^{-1}\right\rangle_{V}\left\langle r_{+}^{-1}\right\rangle_{B}}{E^{2}}
$$

- For $B \rightarrow \pi \pi$ SCET reduces the lattice problem to

$$
(B \rightarrow \pi) \times(0 \rightarrow \pi)
$$

Maybe in the future we can get to

$$
(B \rightarrow 0) \times(0 \rightarrow \pi) \times(0 \rightarrow \pi)
$$

Form Factor Result

More comments

$$
\begin{aligned}
f^{F}(Q)= & \frac{f_{B} f_{M}}{Q^{2}} \int_{0}^{1} d z \int_{0}^{1} d x \int_{0}^{\infty} d r_{+} T\left(z, Q, \mu_{0}\right) \\
& \times J\left(z, x, r_{+}, Q, \mu_{0}, \mu\right) \phi_{M}(x, \mu) \phi_{B}^{+}\left(r_{+}, \mu\right) \\
f^{\mathrm{NF}}(Q)= & C_{k}(Q, \mu) \zeta_{k}\left(Q \Lambda, \Lambda^{2}, \mu\right) .
\end{aligned}
$$

- No suppression of $f^{F} / f^{N F}$ by an $\alpha_{s}\left(\mu_{0}\right)$ is observed, might expect $f^{F}(0) \sim f^{N F}(0) \simeq\left(\Lambda / E_{\pi}\right)^{3 / 2} \sim 0.08$
- In $B \rightarrow \pi \pi$ BBNS use $f^{N F} \gg f^{F}$

Keum, Li, Sanda use " $f^{N F} \ll f^{F}$ " (with a different definition)

- Fit with f.f. models gives, $f_{+}(0)=0.23 \pm 0.04$
- Data for $f_{+}\left(q^{2}=0\right), V\left(q^{2}=0\right), T_{1}\left(q^{2}=0\right), \ldots$, will eventually tell us how f^{F} compares with $f^{N F}$
- Theory Corrections are $\Lambda / E_{\pi} \sim 20-30 \%$ to this factorization, growing as E_{π} gets smaller

$B \rightarrow M M$

eg. Measure $\sin (2 \alpha)$ with $B^{0}(t) \rightarrow \pi^{+} \pi^{-}, \bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}$

$$
\begin{aligned}
\mathcal{A}_{C P}(t) & =-S_{\pi \pi} \sin \left(\Delta m_{B} t\right)+C_{\pi \pi} \cos \left(\Delta m_{B} t\right) \\
S_{\pi \pi} & =\frac{2 \operatorname{Im} \lambda}{1+|\lambda|^{2}}, \quad C_{\pi \pi}=\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}}, \quad \lambda=e^{2 i \alpha} \frac{1+e^{i \gamma} P / T}{1+e^{-i \gamma} P / T}
\end{aligned}
$$

$$
\mathbf{T}=\text { tree } \mathbf{P}=\text { penguin }
$$

$P / T \neq 0$, need information from QCD (or isospin analysis)

$B \rightarrow \pi \pi$

In "QCD Factorization"

In SCET

Beneke, Buchalla, Neubert, Sachrajda

Chay, Kim
Bauer, Pirjol, Rothstein, I.S. (in progress)
involves
$\zeta_{\pi}, \phi_{B}, \phi_{\pi}(x)$

Issues in $B \rightarrow \pi \pi$

1) Factorization/Exponentiation of gluons beyond $\mathcal{O}\left(\alpha_{s}\right)$
2) Result if $\alpha_{s}(Q \Lambda \sim 1.1-1.6 \mathrm{GeV})$ is not perturbative?
3) New Soft-Collinear messenger modes Could spoil factorization in $B \rightarrow \pi \pi, \ldots$, etc.
4) Glauber Gluons beyond $\mathcal{O}\left(\alpha_{s}\right)$ (like Coulombic exchange)
5) Numerical stability and convergence, chirally enhanced terms?
6) Error estimates, could power corrections dominate $B^{0} \rightarrow \pi^{0} \pi^{0}$? (since BBNS and pQCD disagree with new Belle and BaBar data) or is something else going on ... ?

Workshop Issues

- Is it always true that the vacuum factorizes?
$|0\rangle=|0\rangle_{c} \otimes|0\rangle_{u s}$
- Can SCET help to explain the cross section for $e^{+} e^{-} \rightarrow J / \Psi X$, $e^{+} e^{-} \rightarrow \eta_{c} J / P s i ?$
- Could singularities forbid factorization below the $Q \Lambda$ scale?
- Claim of a non-zero time ordered product in $\mathrm{SCET}_{\text {II }}$ for B-decays.
- Claim soft-Collinear modes exist and spoil factorization in some cases.
- A proposal for a new choice of fields for $\mathrm{SCET}_{\mathrm{I}}$, and doubts about soft-collinear modes.

Chay

Outlook

- SCET gives operator definitions to universal hadronic parameters \rightarrow need to measure these with experiment
- Subfields: Jet Physics, B Physics, $b \bar{b}$ Physics
- Allows power corrections to be addressed in a model independent way (even when we lack a rigorous OPE)
- Need to carefully examine expansion for each process and improve our understanding of power corrections to go beyond 20-30\% accuracy for B's
- SCET applies to many inclusive/exclusive processes A lot of theory and phenomenology left to study ...

Colors

This is blue

This is red
This is brown
This is magenta
This is Dark Green
This is Dark Blue
This is Green
This is Cyan
Test how this color looks

