

The Status of the ATLAS Inner Detector

Hans-Günther Moser for the ATLAS Collaboration

<u>Outline</u>

Introduction

•Tracking in ATLAS

- ATLAS ID
 - •Pixel detector
 - Silicon Tracker
 - Transition Radiation Tracker
- System Aspects
- Schedule
- Conclusions

Requirements for Tracking in ATLAS

- Rapidity coverage: $|\eta| < 2.5$
- Momentum resolution for isolated leptons:
- •Track reconstruction efficiency (high-p_T)
- Ghost tracks < 1% (for isolated tracks)
- Impact parameter resolution:

 $\sigma_{\text{r-}\phi}$ = (11 +² 60/ p_T) $\mu\text{m},$

$$\sigma_z = (70 + 2100 / p_T) \mu m,$$

- Low material budget
- Lifetime > 10 LHC years

 $\sigma p_T / p_T \sim 0.1 p_T (TeV)$ > 95%, (isolated tracks)

> 90%, (in jets)

- Occupancy: 700 tracks per high luminosity event inside acceptance
- Short bunch crossing time (25 ns)
- High radiation: up to 10¹⁴ neutrons/cm²/year (1 MeV equivalent)

The ATLAS Inner Detector

Three subdetectors using different technologies to match the requirements of granularity and radiation tolerance

Sub- Detector	r(cm)	element size	resolution	hits/track	channels
Pixel (Silicon)	5-12.5	50μm x400μm (3D)	12μm x 60μm	3	93x10 ⁶
SCT (Silicon Strip)	30-52	80μm x 12cm (stereo)	16μm x 580μm	4	6x10 ⁶
TRT (Straw Tubes)	56-107	4 mm x 74cm (projective)	170µm	36	0.4x10 ⁶

H.-G. Moser, Max-Planck-Institut für Physik, Munich

Beauty03, October 2003

Pixel Detector Layout

3 barrel cylinders2 x 3 endcap disks

Insertable layout -> can be inserted after installation of SCT/TRD -> ,easy' upgrade

Only the support tube needs to be installed beforehand

A TIM MONS A TIM MONS A TIM MONS A TIM MONS B arrest FORWard C Decouples schedule

H.-G. Moser, Max-Planck-Institut für Physik, Munich

Decouples SCT/TRT and Pixel schedule

Last subdetector to be installed!

Beauty03, October 2003

Pixel Modules

Each Module (16.4 x 60.8 mm²) has one sensor with 46080 pixels 16 frontend chips are bump-bonded on the sensor for readout

3 barrel layers need 1744 modules 2x3 endcaps 288 modules

Sensors are in production: CiS (Germany): 600 produced, 400 in production Tesla (Czech Republic): 50 produced, full series to start

Pixel Electronics

FE readout chip in Deep Submicron (DSM) technology (DMILL failed) First prototype batches basically working, however, some fixes necessary Production yield >90% !

MCCI2 (module control) New version with triple logic for SEU (single event upset) tolerance Final production expected to be ready by now

Pixel Support

High precision/low mass objects

Support tube in production (needs to be ready first!)

Global support ready Local supports (staves and sectors) in production A bit late, but not critical

Test Beam Results

AMS 310b,Tesla sensor, irr. 600 V

Resolution: 13.2 μm after irradiation

Efficiency: 99.3% before irrad.

97.7% (60 Mrad)

Operation of 6 modules in parallel with one power supply/cable: No change of performance

SCT Layout

-radii: 259-560 mm -total of 1976 modules (3 rings: 40,40, 52 modules each)

SCT Modules

Basic Concept (Endcap)

-4 Si-strip detectors in 2 planes (40 mrad stereo)

-Mechanical carrier made from Thermal Pyrolytic Graphite (C_k>1700 W/m/°K) and AIN

-Flex Hybrid (Kapton) on carbon substrate with ASIC readout electronics

-Glas pitch adaptors for mechanical/electrical connection detector-electronics (heat barrier)

H.-G. Moser, Max-Planck-Institut für Physik, Munich

SCT Silicon Detectors

- Radiation tolerant up to 3x10¹⁴ p/cm²
- p-on-n single sided detectors
- 285 micron 2-8 kOhm
- 4" substrate
- Barrel: 64x64 mm²
- Forward: wedge shaped (5 shapes)
- 768 readout strips with ca 80 μm pitch
- No intermediate strips
- AC coupled strips
- Polysilicon or implanted bias resistors
- Multiguardring structure to ensure stability up to 500 V
- Ca. 20000 needed
- Produced by Hamamatsu and CIS (competed, excellent quality)

After irradiation: high depletion voltage Short period (10 days): annealing reduces V_{dep} Afterwards V_{dep} rises steadily with time (at high temperatures): Reverse annealing -> keep Si cool (-10 C)

Problems in very exposed regions close to the beam or high η >Reduced thickness: 285 -> 260 μm $\,$ ca. 50V >Oxigenated detectors: less damage and slower reverse annealing

H.-G. Moser, Max-Planck-Institut für Physik, Munich

SCT Electronics

ABCD 128 channels bipolar frontend DMILL rad hard process Shaping time: 20ns Binary Readout (single threshold) 132 cell pipeline

Production finished Low yield, need to use chips with one dead channel to complete detector (ca. 15%)

Module Production

Barrel Modules

Production running at 4 locations Ca. 500 modules produced & tested

Production at 7 locations Commissioning of production sites Start in October

Engineering

Carbon cylinders for barrel support are ready

Need to be equipped with services

H.-G. Moser, Max-Planck-Institut für Physik, Munich

4 of the 18 carbon disks for the endcap module support are produced Need to be equipped with services Again, high precision/low mass objects Disk flat to +- 60 μ m over 2 m!

Beauty03, October 2003

0.90

0.96

0.96

0.955

0.96

Testbeam Results

H.-G. Moser, Max-Planck-Institut für Physik, Munich

350

Bias Voltage (V)

Beauty03, October 2003

300

350

400

0.9

0.96

0.90

0.99

° 150

550

Bias Voltage (V)

Testbeam Results

Nominal specifications (after irradiation):

>99% efficiency
< 5x10⁻⁴ occupancy
(readout bandwidth limit)
@ 1 fC threshold

Ok for barrel modules

Endcap modules have slightly higher noise. Still possible to meet the specs tuning the threshold

TRT Modules

Barrel Module Production completed, being tested

Endcap Module production was delayed due to problems with the front-end boards (,WEBs'), should be completed in May 2005 (still on critical path)

Beauty03, October 2003

TRT Gas Mixture

Original gas mixture:

 $Xe(70\%) CF_4(20\%) CO_2(10\%)$

However, CF₄ radicals destroyed glass wire joints (discovered in 2001, after >20% produced)

- Use polyimide/epoxy joint.... Too late 1.
- Change gas mixture: 2.

Xe(70%) CO₂(27%) O₂(3%)

acceptable operation stability equivalent physics performance (but slower)

Requires periodical wire cleaning with $Ar/CO_2/CF_4$ to remove Si deposit, if found (demonstrated)

H.-G. Moser, Max-Planck-Institut für Physik, Munich

- Cooling
- Gas system
- Services
- Structure/Supports
- Integration
- Installation

e.g. patch panel to connect electrical & optical and cooling services

	INSIDE ID VOLUME			OUTSIDE ID VOLUME
	electronics	cables	Thermal enclosure	cables
PIXEL	12.5 kW	3 kW	1.3 kW	11 kW
SCT	39 kW	3.6 kW	6 kW	20 kW
TRT	46 kW	1 kW	-	6 kW
Total	96.5 kW	7.6 kW	7.3 kW	37 kW

H.-G. Moser, Max-Planck-Institut für Physik, Munich

Assembly and integration

A dedicated facility for ID assembly and integration is set up close to the ATLAS pit.

Assembly of SCT barrel, tests of SCT endcaps, TRT assembly
SCT/TRT integration and testing
Pixel Detector assembly

H.-G. Moser, Max-Planck-Institut für Physik, Munich

Expected Performance

Material in ID changed compared to initial (,TDR') layout (increased, of course) -increased pixel sensor thickness -More realistic engineering and services

Radius of inner pixel layer 4.3cm -> 5cm

Some impact on momentum and impact parameter resolution

However, because of funding and schedule problems the initial detector will not have:

Middle pixel layer, at R=9 cm,
Middle pixel disks, at z = +/- 58 cm
TRT ,C' wheels, at Iŋl > 1.7

Impact on:

Missing pixel layers

-> worse impact parameter resolution

-> reduced b-tagging performance

Missing TRT C-wheels

-> worse momentum resolution at $l\eta l > 1.7$

momentum resolution

Schedule

Start assembly in SR building: SCT barrel ready: SCT endcap C ready SCT endcap A ready

TRT barrel ready TRT endcap C ready TRT endcap A ready

ID barrel ready for installation in ATLAS ID endcap C ready for installation ID endcap A ready for installation

Staged items: 3rd pixel layer TRT C wheels

H.-G. Moser, Max-Planck-Institut für Physik, Munich

April 04 January 05 April 05 August 05

January 05 October 04 September 05

July 05 November 05 March 06

August 06 July 06

Conclusions

Most of the technical problems are resolved

Production of detector modules and structures has started

Preparations for detector integration started

Main worry is the tight schedule and fighting delays

We are confident to be ready for physics in 2007

Beauty03, October 2003