Semileptonic Branching Ratios and Moments

Giuseppe Della Ricca University and INFN – Trieste, Italy

9th International Conference on B Physics at Hadron Machines October 14-18, 2003 – Pittsburgh, PA, USA

Motivations

- semileptonic decays are
 - relatively simple theoretically at parton level
 - accessible experimentally
 - sensitive to quark couplings to W[±]
 (i.e. CKM matrix elements |V_{ub}| and |V_{cb}|)
 - probe the dynamics of the decay
 - probe the impact of strong interactions
- two possible approaches
 - exclusive measurements
 - need form-factors to describe the transition of the B meson to a lighter one
 - inclusive measurements
 - need OPE and b-quark mass to extract $|V_{xb}|$ from the total rate

Target

in naïve spectator picture the process is analogous to muon decay

$$\Gamma(b \rightarrow u | \overline{v}, c | \overline{v}) \approx \frac{G_F^2 m_b^5}{192 \pi^3} |V_{ub,cb}|^2 \Rightarrow f(\text{parameters}) x |V_{ub,cb}|^2$$

$$hut \text{ OCD (perturbative and non-perturbative) corrections are}$$

but QCD (perturbative and non-perturbative) corrections are needed to extract weak decay physics

comparison of results from different measurements provides a test of the consistency of OPE predictions and of underlying assumptions

use many different approaches/techniques

CKM'02 @ CERN

Outline

- exclusive measurements
- \implies BR(B \rightarrow ρ ev) [BaBar]
- → BR(B→ π Iv), BR(B→" ρ "Iv), BR(B→ ω Iv) [BaBar, Belle, Cleo]
- \implies BR(B \rightarrow D^{*}Iv) [BaBar]
 - BR(B $\rightarrow \pi I_V$) [Cleo]
- \rightarrow BR(B \rightarrow D^{**0}IvX) [Opal]

far too much interesting material to include in 20 min [apologies in advance]

- inclusive measurements
- \implies $\langle M_x^n \rangle$, $\langle E_l^n \rangle$ in $B \rightarrow X_c I_V$ [BaBar, Cleo, Delphi]
 - BR(B \rightarrow X_uIv) [BaBar]
- \implies $\Delta BR(B \rightarrow X_u lv)$ [Belle]

my own selection of recent result

BR(B⁰ $\rightarrow \rho^+ e^- \nu)$ ^[1]

signal (ISGW2)

- crossfeed
 - b→uev downfeed (ISGW2+DeFazio Neubert)
 - $b \rightarrow cev$ (HQET + Goity Roberts)

HILEP: 2.3< E_{electron}<2.7 GeV (large continuum backgrounds)

LOLEP: 2.0 < $E_{electron}$ < 2.3 GeV (large b \rightarrow cev backgrounds)

 $\Gamma(B^{0} \rightarrow \rho^{-}e^{+}\nu) = 2 \Gamma(B^{+} \rightarrow \rho^{0}e^{+}\nu)$ $\Gamma(B^{0} \rightarrow \pi^{-}e^{+}\nu) = 2 \Gamma(B^{+} \rightarrow \pi^{0}e^{+}\nu)$ $\Gamma(B^{+} \rightarrow \rho^{0}e^{+}\nu) = \Gamma(B^{+} \rightarrow \omega e^{+}\nu)$

(isospin-constrained average of ρ^{\pm} and ρ^{0})

BR(B⁰ $\rightarrow \rho^+ e^- \nu)$ ^[2]

extrapolate partial branching fraction to entire lepton-energy spectrum using five different form-factor calculations

PRL 90 (2003) 181801

ISGW2: combined result: $2.76 \pm 0.34 \pm 0.40$ Beyer/Melikhov: $3.64 \pm 0.46 \pm 0.52$ UKQCD: $3.34 \pm 0.42 \pm 0.48$ LCSR: $3.86 \pm 0.50 \pm 0.56$

unweighted mean

theoretical error on the combined result:

full spread seen between the different form-factors

Combined: $3.29 \pm 0.42 \pm 0.47 \pm 0.60$

Ligeti/Wise:

 $2.86 \pm 0.37 \pm 0.41$

combined result (unweighted mean):

BR=(3.29 \pm 0.42 \pm 0.47 \pm 0.55) x 10⁻⁴

BR(B $\rightarrow \pi^0 l_{\nu}, \ \rho^0'' l_{\nu}, \ \omega l_{\nu})$

 $\begin{array}{ll} \mathsf{BR}(\mathsf{B}{\rightarrow}\pi^{0}\mathsf{I}_{\mathcal{V}}) &= (0.78 \pm 0.32 \pm 0.13 \) \times 10^{-4} \\ \mathsf{BR}(\mathsf{B}{\rightarrow}``\rho^{0''}\mathsf{I}_{\mathcal{V}}) &= (0.99 \pm 0.37 \pm 0.19 \) \times 10^{-4} \\ \mathsf{BR}(\mathsf{B}{\rightarrow}\omega\mathsf{I}_{\mathcal{V}}) &= (2.20 \pm 0.92 \pm 0.57 \) \times 10^{-4} \end{array}$

new CLEO results: see next talk !

preliminary

$B \rightarrow D^* I_V$: motivations

 $B \rightarrow D^* I_V$ represents 10% (5% e +5% μ channel) of the total B^0 decays, so a precise understanding of this decay improves the overall knowledge of the B branching ratios

the study of the differential decay rate can be used to extract $|V_{cb}|$

 $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ $D^0 \rightarrow K\pi, K_s \pi \pi, K \pi \pi^0, K \pi \pi \pi$

 $\delta M [= M(D^*)-M(D^0)]$ used to fit signal and background components (except D^{**})

data control samples are used to estimate the background components (72 samples)

Background characterization: fit to $\delta M [= M(D^*)-M(D^0)]$

Results for BR($B \rightarrow D^* I_V$)

 $BR(B^{0}\rightarrow D^{*-}I^{+}\nu) =$ $(4.69\pm0.02_{stat.data}$ $\pm0.02_{stat.MC}$ $\pm0.24_{syst.data})\%$

comparison with other results

Orbitally excited D mesons (D**)

- D^{**0} are L=1 orbitally excited charm mesons
 - narrow $J_q = 3/2$, $J^p = 1^+, 2^+$ states (D_1^0, D_2^{*0})
 - wide $J_q = 1/2$, $J^p = 0^+, 1^+$ states (not visible with statistics)

motivation

- investigate the difference between measured inclusive and exclusive semileptonic branching ratios
- reduce uncertainty in |V_{cb}|
- test HQET predictions

Method

Giuseppe Della Ricca – Semileptonic BRs and Moments

15

BEAUTY'03 – October 14-18, 2003

0.08 0.06 tagged by fully reconstructing one B 0.06 σ_{0.04} 0.04 0.02 0.02 $BR(B^+ \rightarrow XI_V)/B(B^0 \rightarrow XI_V) = 1.14 \pm 0.04 \pm 0.01$ 2 $B^+ o X \mu u$ $B^+ \rightarrow X e \nu$ 0.12 0.12 preliminary 0.10 0.10 0.08 0.08 0.06 0.06 $\Gamma_{sl}(ns^{-1})$ $BR_{cl}(\%)$ 0.04 0.04 0.02 0.02 B⁰ 10.32±0.32±0.29 67.0±2.8 **የ** 2 P (B rest frame) [GeV/c] 11.77±0.26±0.32 71.1±2.5 B⁺ $11.19\pm0.20\pm0.31$ 69.0±1.9 $1/2(B^0+B^+)$ $\Gamma_{sl}(B^+)/\Gamma_{sl}(B^o) = 1.063 \pm 0.038$ Y(4S) 10.89 ±0.24 67.7±1.8

S S O O O O O

 $B^0
ightarrow Xe\overline{
u}$

B^o & B⁺ semileptonic decays

Giuseppe Della Ricca – Semileptonic BRs and Moments

accurate, separate BR_{sl} for $B^{\circ} \& B^{+}$,

BEAUTY'03 – October 14-18, 2003

 $B^0 \to X \mu \nu$

+ prompt lepton + secondary lepton

0.12

0.10

80.0

Semileptonic B decays average BR_{sl}

BEAUTY'03 – October 14-18, 2003

Parameters of HQE

parameterization of decay rate in terms of Operator Product Expansion in HQET in powers of $\alpha_s(m_b)\beta_0$ and $\Lambda/m_{B:}$

$$\Gamma_{\rm sl} = \frac{G[\mathbf{V}_{\sigma}]^2}{192\pi^3} m_{\rm B}^5 c_1 \left\{ 1 - c_2 \frac{\alpha_{\rm s}}{\pi} + \frac{c_3}{m_{\rm B}} \overline{\Lambda} \left(1 - c_4 \frac{\alpha_{\rm s}}{\pi} \right) + \frac{c_5}{m_{\rm B}^2} \overline{\Lambda}^2 + c_6 \overline{\Lambda}^2 + c_6 \overline{\Lambda}^2 + c_6 \overline{\Lambda}^2 \right\} + O(\frac{\alpha_{\rm s}^2}{m_{\rm B}^3}) + O(\frac{\alpha_{\rm s}^2}{\pi}) \cdots \right\}$$

pole mass expansion

$\overline{\Lambda}$, λ_1 , λ_2 , are non-perturbative parameters

- λ_1 : (-) kinetic energy of the motion of the b-quark
- λ_2 : chromo-magnetic coupling of b-quark spin to gluon (from B*-B mass difference, λ_2 =0.12GeV²)
- $\overline{\Lambda} = m_B m_b + (\lambda_1 3 \lambda_2)/2m_B + \dots$
 - + additional parameters enter at higher orders (ρ_1 , ρ_2 , τ_1 , τ_2 , τ_3 , τ_4) use theoretical estimates $-1/m_B^3$

OPE parameter extraction

first derivations of OPE parameters from spectral moments used the pole mass expansion and photon energy spectrum in $B \to X_{s}\gamma$, hadronic mass spectrum and lepton energy spectrum in $B \to X_c I_V$

Giuseppe Della Ricca – Semileptonic BRs and Moments

21

Interpretations

moments of hadronic mass spectrum and of lepton energy spectrum are sensitive to the non-perturbative parameters of the Heavy Quark Expansion.

at order $1/m_b^2 \Rightarrow \overline{\Lambda}$, λ_1 , λ_2 ($\lambda_2 \approx 0.12 \text{ GeV}^2$), at order $1/m_b^3 \Rightarrow \rho_1$, ρ_2 , T_{1-4}

two possible approaches:

1) pole mass expansions $M_n = f_n(\lambda_1, \overline{\Lambda}, \lambda_2, T_1, T_2, ...)$

(Falk, Luke, Gambino)

2) running quark masses $M_n = f_n(\mu_{\pi}^2, m_b(1 \text{ GeV}), \mu_G^2, \rho_D^3, \rho_{LS}^3,...)$ (Bigi, Shifman, Uraltsev, Vainshtein)

$$\begin{split} \overline{\Lambda} &= 0.542 \pm 0.065_{\text{fit}} \pm 0.090_{\text{sys}} \,\text{GeV} \\ \lambda_1 &= -0.238 \pm 0.055_{\text{fit}} \pm 0.030_{\text{sys}} \text{GeV}^2 \\ \rho_1 &= 0.030 \pm 0.028_{\text{fit}} \pm 0.010_{\text{sys}} \text{GeV}^3 \\ \rho_2 &= 0.066 \pm 0.025_{\text{fit}} \pm 0.192_{\text{sys}} \text{GeV}^3 \end{split}$$

good consistency of all measurements (χ^2 /d.o.f.=0.4) results compatible with CLEO

similar results with $m_b^{1S}-\lambda_1$ formalism applied to CLEO and DELPHI data (C.W.Bauer, Z.Ligeti, M.Luke, A.V.Manohar hep-ph/0210027)

Non-perturbative parameter extraction

 $r = \frac{m_c^2(\mu)}{m_b^2(\mu)}$

makes use of low scale running quark masses and does not rely on a $1/m_c$ expansion

$$\mathsf{M}_{\mathsf{n}}(\mathsf{E}_{\mathsf{I}}) = \left(\frac{\mathsf{m}_{\mathsf{b}}}{2}\right)^{\mathsf{n}} \left(\varphi_{\mathsf{n}}(\mathsf{r}) + \mathsf{a}_{\mathsf{n}}(\mathsf{r})\frac{\alpha_{\mathsf{s}}}{\pi} + \mathsf{b}_{\mathsf{n}}(\mathsf{r})\frac{\mu_{\mathsf{n}}^{2}}{\mathsf{m}_{\mathsf{b}}^{2}} + \mathsf{c}_{\mathsf{n}}(\mathsf{r})\frac{\mu_{\mathsf{G}}^{2}}{\mathsf{m}_{\mathsf{b}}^{2}} + \mathsf{d}_{\mathsf{n}}(\mathsf{r})\frac{\rho_{\mathsf{D}}^{3}}{\mathsf{m}_{\mathsf{b}}^{3}} + \mathsf{s}_{\mathsf{n}}(\mathsf{r})\frac{\rho_{\mathsf{LS}}^{3}}{\mathsf{m}_{\mathsf{b}}^{3}} + \dots\right)$$

 $m_b(\mu)$, $m_c(\mu)$ are independent parameters and two operators only contribute to $1/m_b^3$ corrections : ρ_D^3 , ρ_{LS}^3

first applied to fit DELPHI data

- multi-parameter χ^2 fit to first three moments of lepton energy spectra and hadronic mass spectra (higher moments used to get sensitivity to $1/m_h^3$ parameters)

- use expressions for non-truncated lepton spectra
- simultaneous use of leptonic and hadronic moments in order to leave enough free parameters in the fit

Phys. Lett. B556 (2003) 41

 $\begin{array}{rcl} m_{b,kin} \; (1 \mbox{GeV}) = \; 4.570 \; \underline{+} 0.082_{fit} \; \underline{+} 0.010_{sys} \; \mbox{GeV} \\ m_{c,kin} \; (1 \mbox{GeV}) = \; 1.133 \; \underline{+} 0.134_{fit} \; \underline{+} 0.030_{sys} \; \mbox{GeV} \\ \mu_{\pi}^{\; 2} \; (1 \mbox{GeV}) \; = \; 0.382 \; \underline{+} 0.070_{fit} \underline{+} 0.030_{sys} \; \mbox{GeV}^{2} \\ \rho_{D}^{\; 3} \; (1 \mbox{GeV}) \; = \; 0.089 \; \underline{+} 0.039_{fit} \underline{+} 0.010_{sys} \; \mbox{GeV}^{3} \end{array}$

good consistency of all measurements (χ^2 /d.o.f.=0.9)

within present accuracy no need to introduce higher order terms to establish agreement with data

26

3.6

3.4

3.2

2.8

2.6

2.4

2.2

1.8

non-res

2.4 2.6 2.8

3

 $< M_x > TRUE$

3.2 3.4 3.6

Š⊼ ××

Hadronic mass moments [1]

measured ${\widetilde{M}}_{\!X}$ differs from true $M_{\!X}$

for each interval in $\rm M_{\chi\prime}$ full detector simulation gives < $\rm M_{\chi}>$ and < $\rm M_{\chi}>$

calibration curves applied to data: no model dependence !

$p_{min}^{\ *}$ dependence study

Hadronic mass moments ^[2]

fit OPE for $\langle M_X^2 \rangle$ to data and extract the two leading HQE parameters $\overline{\Lambda}$ and λ_1 (MS scheme) \rightarrow all correlations taken into account

all hadron mass moments are consistent (overlap from bands and BABAR ellipse) but $\Delta \chi^2 = 1$ contour does not overlap with $\langle E_{\gamma} \rangle$ band from CLEO b $\rightarrow s_{\gamma}$

b)

Hadronic mass moments ^[3]

extraction of m_b^{1s} , and λ_1^{1s} from a fit to the HQE in the 1s mass scheme $(O(1/m_h^3))$ parameters are fixed in the fit)

 $\Delta \chi^2 = 1$ contour of hadron moments and lepton moments do not overlap

indication for large $O(1/m_b^3)$ corrections, duality violation, or maybe even more ...?

> $m_b^{1s} = 4.638 \pm 0.094_{exp} \pm 0.062_{dim \oplus BLM} \pm 0.065_{1/m_B^3}$ GeV $\lambda_1 = -0.26 \pm 0.06_{exp} \pm 0.04_{dim \oplus BLM} \pm 0.04_{1/m_p^3} \text{ GeV}^2$

> > hep-ex/0307046

Hadronic mass moments

BEAUTY'03 – October 14-18, 2003

30

Summary

- Huge efforts/progress in this area !!
- Large theoretical progress over the last decade (HQET & OPE)
- Fully reconstructed B meson recoil tag, neutrino reconstruction
- Many complementary observables
- Inclusive studies yield crucial informations for Heavy Quark physics, even for exclusive decays

Start of Backup Slides

The DELPHI detector

The OPAL detector

Inclusive $b \rightarrow c l_v$

 rather than focusing on one hadronic final state, sum over all states and compare to quark level calculation

$$\sum_{i} \Gamma(\mathsf{B} \to \mathsf{X}_{\mathsf{c}}^{(i)} | \overline{\mathsf{v}}) = \Gamma(\mathsf{b} \to \mathsf{c} | \overline{\mathsf{v}})$$

- relies on assumption of quark-hadron duality
- constrain theory parameters and test consistency

Inclusive BR(B \rightarrow X_c $\vdash \nu$) and τ_{B}

(4S) BR(B
$$\rightarrow$$
X_c I⁻v) = (10.83± 0.25) ×10⁻²
 $\tau_{B} = (1.598 \pm 0.01) \text{ ps}$
 $T_{B\rightarrow$ Xc I-v = 0.446 (1 ±0.023 ±0.007)×10⁻¹⁰ MeV
LEP BR(B \rightarrow X I⁻v) = (10.59±0.22) ×10⁻²
BR(B \rightarrow X_u I⁻v) = (0.17±0.05) ×10⁻²
BR(B \rightarrow X_c I⁻v) = (10.42±0.26) ×10⁻²
 $\tau_{b} = (1.573 \pm 0.01) \text{ ps}$
 $T_{B\rightarrow$ Xc I-v = 0.436 (1 ±0.022 ±0.014)×10⁻¹⁰ MeV

d average $\Gamma_{B\to X_c l^- v} = 0.441 (1 \pm 0.018) \times 10^{-10} \text{ MeV}$

Reconstruction and cuts

 D^*/D^0 are reconstructed in the following modes:

decay mode	BR (%)
$D^{*\pm} \rightarrow D^0 \pi^{\pm}$	67.7 ± 0.5
$D^0 \rightarrow K\pi$	3.80 ± 0.09
$D^0 \rightarrow K_s \pi \pi$	2.96 ± 0.18
$D^0 \rightarrow K \pi \pi^0$	13.1 ± 0.9
$D^0 \rightarrow K \pi \pi \pi$	7.46 ± 0.31

Moments of lepton energy spectrum and hadronic mass spectrum in $Z \rightarrow b\bar{b}$ events

large momentum of b-hadrons ($E_{\rm B} \sim 30$ GeV) gives sensitivity to full lepton energy spectrum in B rest frame: measure first, second and third moment

10 5 0.25 0.5 0.75

lepton spectrum in $B \rightarrow X_c \vdash v$

B system reconstructed from lepton+neutrino+charm vertex

lepton boosted in B rest frame DELPHI'03-28

Results for M_n

 $< m_{H}^{n} >= p_{D} m_{D}^{n} + p_{D*} m_{D*}^{n} + (1 - p_{D} - p_{D*}) < m_{D**}^{n} >$

moments of the hadronic mass

measured

$$\begin{split} \mathsf{M}_1 &= <\mathsf{m}^2_{\,\mathsf{H}} - \bar{\mathsf{m}}^2_{\,\mathsf{D}} > &= 0.647 \pm 0.046 \pm 0.093 \; (\text{GeV}/\text{c}^2)^2 \\ \mathsf{M}_2 &= <(\mathsf{m}^2_{\,\mathsf{H}} - \bar{\mathsf{m}}^2_{\,\mathsf{D}})^2 > &= 1.98 \pm 0.23 \pm 0.29 \; (\text{GeV}/\text{c}^2)^4 \\ \mathsf{M}_2' &= <(\mathsf{m}^2_{\,\mathsf{H}} - <\mathsf{m}^2_{\,\mathsf{H}} >)^2 > &= 1.56 \pm 0.18 \pm 0.17 \; (\text{GeV}/\text{c}^2)^4 \end{split}$$

 $M_3' = \langle (m_H^2 - \langle m_H^2 \rangle)^3 \rangle = 4.05 \pm 0.74 \pm 0.31 (GeV/c^2)^6$

DELPHI'03-28

moments of the lepton energy spectrum

 $< E_l^* > = 1.383 \pm 0.012 \pm 0.009 \text{ GeV}$ $< (E_l^* - < E_l^* >)^2 > = 0.192 \pm 0.005 \pm 0.008 \text{ GeV}^2$ $< (E_l^* - < E_l^* >)^3 > = -0.029 \pm 0.005 \pm 0.006 \text{ GeV}^3$

Lepton endpoint

from the partial branching ratio $\Delta B(B \rightarrow X_u e \nu) = (0.152 \pm 0.014 \pm 0.014) \cdot 10^{-3}$ with f_u from CLEO (b \rightarrow s γ measurement) f_u(Δp) = $\frac{\Delta B}{B} = 0.074 \pm 0.014 \pm 0.009$ B(B $\rightarrow X_u e \nu$) = (2.05 $\pm 0.27_{exp} \pm 0.46_{f_u}) \cdot 10^{-3}$

hep-ex/0207081

Hadronic moments - info

DELPHI '03

							sys											sys
M1	0,647	±	0,046	±	0,093	GeV ²	0,14				M1	0,534	±	0,041	<u>±</u>	0,074	GeV ²	0,14
M2	1,98	±	0,23	±	0,29	GeV⁴	0,15				M2	1,508	±	0,200	±	0,230	GeV⁴	0,15
M2'	1,56	±	0,18	±	0,17	GeV⁴	0,11				M2'	1,226	\pm	0,158	±	0,152	GeV⁴	0,12
M3'	4,05	±	0,74	±	0,31	GeV⁵	0,08				M3'	2,970	±	0,673	±	0,478	GeV ⁶	0,16
E1	1,383	±	0,012	±	0,009	GeV	0,01				E1	1,383	±	0,012	<u>±</u>	0,009	GeV	0,01
E2	0,192	±	0,005	±	0,008	GeV ²	0,04				E2	0,192	±	0,005	±	0,008	GeV ²	0,04
E3	-0,029	±	0,005	±	0,006	GeV ³	0,21				E3	-0,029	±	0,005	±	0,006	${\rm GeV}^3$	0,21
sys mom sys theo																		sys to
$\overline{\Lambda}$	0,542	±	0,065	±	0,087	±	0,040	GeV	0,16	0,07	$\overline{\Lambda}$	0,40	\pm	0,10	±	0,02	GeV	0,05
λ_1	-0,238	±	0,055	±	0,028	±	0,060	GeV ²	0,12	0,25	λ ₁	-0,15	\pm	0,07	<u>±</u>	0,03	GeV ²	0,20
λ ₂	0,116	±	0,004	±	0,000	±	0,010	GeV²	0,00	0,09	λ ₂	0,12	±	0,01	±	0,01	GeV ²	0,08
ρ ₁	0,030	±	0,028	±	0,007	±	0,030	${\rm GeV}^3$	0,23	1,00	ρ1	-0,01	\pm	0,03	±	0,03	GeV ³	3,00
ρ2	0,066	±	0,025	±	0,019	±	0,190	GeV ³	0,29	2,88	ρ2	0,03	<u>+</u>	0,03	±	0,01	GeV ³	0,33
τ _i	0,000	±	0,125	GeV ³							τ _i	0,000	±	0,125	GeV³			
									1					1				
m _b	4,570	±	0,082	±	0,010	±	0,005	GeV	0,002	0,001	m _b	4,59	±	0,08	<u>±</u>	0,01	GeV	0,002
m _c	1,133	±	0,134	±	0,019	±	0,020	GeV	0,02	0,02	m _c	1,13	±	0,13	±	0,03	GeV	0,027
μ <mark>2</mark>	0,382	±	0,070	±	0,031	±	0,020	GeV ²	0,08	0,05	μ_{π}^2	0,31	\pm	0,07	±	0,02	GeV ²	0,065
μ_{G}^{2}	0,35	±	0,05	GeV ²							μ _G ²	0,35	±	0,05	GeV ²			
ρ	0,089	±	0,039	±	0,004	±	0,010	${\rm GeV}^3$	0,04	0,11	ρ ³	0,05	±	0,04	±	0,01	GeV³	0,200
ρ_{LS}^3	-0,15	±	0,15	GeV³							ρ_{LS}^3	-0,15	±	0,15	GeV ³			

DELPHI '02

45

End of Backup Slides