Theory of Radiative \& Rare Decays

Gino Isidori [INFN-Frascati]

- Introduction [Why are we interested in rare decays?]
- Inclusive FCNC B decays [General properties]
- $B \rightarrow X_{s} \gamma$
- $B \rightarrow X_{s} l^{+} l^{-}$
- Exclusive channels [Generalities \& a few selected examples]
- $B \rightarrow l^{+} l^{-}$
- Conclusions

Why are we interested in rare decays?

Rare processes are interesting when their suppression is associated to some (hopefully broken...) conservation law [e.g.: $\not D \Leftrightarrow p$ decay, $\mathbb{L} \Leftrightarrow 2 \beta 0 v$ decay, ...]

Flavor Changing Neutral Currents

[especially $\mathrm{CP}-\mathrm{FCNC}]$

$$
q_{i} \rightarrow q_{j}+\gamma, l^{+} l^{-}, \overline{\mathrm{v}} v
$$

are the ideal candidates to study in detail the breaking of the (approximate) flavor symmetry of the SM

- no tree-level contributions within the SM
- likely to be dominated by short-distance dynamics [key point]

precise indirect determ. of flavor mixing within the SM [e.g.: $V_{t d}$]

enhanced sensitivity to possible new degrees of freedom

Available data on $\triangle \mathrm{F}=2 \mathrm{FCNC}$ amplitudes (meson-antimeson mixing) already provides serious constraints on the scale of New Physics:

$$
\begin{gathered}
\text { e.g.: } K^{0}-\bar{K}^{0} \text { mixing } \\
\Downarrow \\
\Lambda \gtrsim 100 \mathrm{TeV} \\
\text { for } \mathrm{O}^{(6)} \sim \frac{(\overline{\mathrm{sd}})^{2}}{\Lambda^{2}}
\end{gathered}
$$

much more severe than bounds on the scale of flavorconserving operators from
e.w. precision data
...while a natural stabilization of the Higgs potential $\Rightarrow \Lambda \sim 1 \mathrm{TeV}$
After the recent precise data from B factories, it is more difficult [although not impossible] to believe that this is an accident

The Flavor Problem

Two possible solutions:

- pessimistic [very unnatural]: $\Lambda>100 \mathrm{TeV}$
\Rightarrow almost nothing to learn from other FCNC processes (but also very difficult to find evidences of NP at LHC...)
- natural: $\Lambda \sim 1 \mathrm{TeV}+$ flavor-mixing protected by additional symmetries
\Rightarrow still a lot to learn from rare decays
- Present fit of the CKM unitarity triangle involve only two types of amplitudes sensitive to NP: $K-K$ mixing and $B-B$ mixing ($\Delta \mathrm{F}=2$ transitions only) \Rightarrow we known very little yet about $\Delta \mathrm{F}=1$ transitions
- Present CKM fits provide only a consistency check of the SM hypothesis but do not provide a bound on the NP parameter space \Rightarrow only with the help of rare decays we can study the underlying flavor symmetry in a model-independent way

- FCNC B decays

General properties:

On general grounds, the inclusive transitions $B \rightarrow X_{(s, d)} \gamma \quad \& B \rightarrow X_{(s, d)} l^{+} l^{-}$ [and eventually $B \rightarrow X_{(s, d)} \mathrm{v}$] are the best candidates to perform precision tests of flavor dynamics:

- Precise (NLO \& NNLO) calculations of the inclusive decay rates within perturbative QCD $\left(m_{b} \gg \Lambda_{Q C D}\right)$

$$
\Gamma(b \rightarrow s \gamma) \xrightarrow{m_{b} \rightarrow \infty} \Gamma\left(B \rightarrow X_{s} \gamma\right)
$$

- Systematic control of the (suppressed) non-perturbative corrections via the heavy quark expansion

$$
\begin{gathered}
\mathrm{O}\left(\Lambda_{Q C D} / m_{b}\right) \text { corrections } \\
\text { well under control } \\
\text { (errors }<5 \% \text {) in } \\
\frac{\text { sufficiently inclusive }}{\text { observables }}
\end{gathered}
$$

$$
\begin{aligned}
& \text { long-distance contributions } \\
& \qquad b \rightarrow s(c \bar{c}) \rightarrow s\left(\gamma, l^{+} l^{-}\right)
\end{aligned}
$$

under control (in the charm case)
far from the resonance region

$$
\Rightarrow \mathrm{O}\left(\Lambda_{Q C D} / m_{c}\right)
$$

The perturbative calculation:

$$
H_{W}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s} \sum_{i} C_{i}(\mu) Q_{i}
$$

Effective operators sensitive to short distances:

$$
+
$$

$$
\left.\begin{array}{l}
Q_{7}=\frac{e^{2} m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu} \\
Q_{8}=\frac{g_{s}^{2} m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} \tau^{a} b_{R} G_{\mu \nu}^{a}
\end{array}\right]
$$

ordinary 4-quark operators $\left[Q_{1-6}\right]$

$$
\left.\begin{array}{l}
Q_{9}=\frac{e^{2}}{16 \pi^{2}} s_{L} \gamma^{\mu} b_{L} \bar{l} \gamma_{\mu} l \\
Q_{10}=\frac{e^{2}}{16 \pi^{2}} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{l} \gamma_{5} \gamma_{\mu} l
\end{array}\right]
$$

$$
A(B \rightarrow f)=\sum_{i} C_{i}(\mu)\langle f| Q_{i}|B\rangle(\mu)
$$

A consistent $\mathrm{N}(\mathrm{N})$ LO analysis [$\left.\alpha_{S}{ }^{N+1} \ln \left(m_{b} / M_{W}\right)^{N}\right]$ requires 3 steps:
$\mathrm{N}(\mathrm{N}) \mathrm{LO} C_{i}\left(M_{W}\right)+\mathrm{N}(\mathrm{N}) \mathrm{LO}$ RGE $+\mathrm{N}(\mathrm{N}) \mathrm{LO}$ matrix elements
I. The initial conditions
\Rightarrow sensitivity to shortdistances [NP]

II. The RGE evolution
\Rightarrow QCD dilution of the s.d. sensitivity [resummation of large
logs: $\left.\alpha_{S} \ln \left(\mu / M_{W}\right) \sim \mathrm{O}(1)\right]$

III. The matrix elements
\Rightarrow sensitivity to longdistances ($c \bar{c}$ threshold, m_{c} dependence,...)

N.B.: operators such as Q_{10} [axial current $\sim Z$ penguin], not contaminated by the mixing with 4 -quarks, are particularly clean probes of s.d. dynamics $\Rightarrow B \rightarrow X_{s} l^{+} l^{-}$

- $B \rightarrow X_{s} \gamma \quad$ "The most effective NP killer"

NLO enterprise completed already a few years ago, all steps recently cross-checked:
I. $C_{i}\left(M_{W}\right)\left[C_{7,8} @ 2\right.$ loops $]$ Adel \& Yao '94 + several checks (also beyond SM)
II. RGE $\left[Q_{7,8} \leftrightarrow Q_{1-6} @ 3\right.$ loops] Chetyrkin, Misiak, Munz '97

+ Gambino, Gorban, Haisch, 03
III. $\left\langle Q_{i}\right\rangle\left[Q_{1-6} @ 2\right.$ loops] Greub, Hurth, Wyler '96 + Buras et al. '01

Residual scale dependence in the BR $\sim 4 \%$!
\Rightarrow At this level of accuracy also subleading electroweak corrections become relevant [main effect: running of $\alpha_{e m}$] Czarnecki \& Marciano '98; Gambino \& Haisch '00
\rightarrow Largest uncertainty induced by charm mass dependence (III.) :
10% shift in BR for $m_{c}{ }^{\text {pole }} \rightarrow m_{c}{ }^{\mathrm{MS}}(\mu)$ [NNLO effect] Misiak, Gambino '01
\Rightarrow Non-perturbative $1 / m_{b, c}$ corrections well under control in the total rate:
no linear terms;
small $\left(\Lambda_{Q C D} / m_{b, c}\right)^{2}$ terms $(\sim 2-3 \%)$ known from $\Gamma\left(B \rightarrow X_{c} l v\right) \&\left(M_{B^{*}}-M_{B}\right)$ [HQET]
\Rightarrow The most serious problem is the fact that the fully inclusive rate is not accessible: extrapolation below $E_{\gamma}{ }^{\text {cut }}$

The E_{γ} spectrum [shape function] need to be determined from data [effective $\Lambda_{Q C D} / m_{b}$ corrections]

\Rightarrow Non-perturbative $1 / m_{b, c}$ corrections well under control in the total rate:
no linear terms;
small $\left(\Lambda_{Q C D} / m_{b, c}\right)^{2}$ terms $(\sim 2-3 \%)$ known from $\Gamma\left(B \rightarrow X_{c} l v\right) \&\left(M_{B^{*}}-M_{B}\right)$ [HQET]
\Rightarrow The most serious problem is the fact that the fully inclusive rate is not accessible: extrapolation below $E_{\gamma}{ }^{\text {cut }}$

The E_{γ} spectrum [shape function] need to be determined from data [effective $\Lambda_{Q C D} / m_{b}$ corrections]

Error in the extrapolation ~ 5\% [CLEO '01 + Kagan, Neubert; Ali, Greub]

Putting all the ingredients together:

Most recent SM th. estimate:

$$
B\left(B \rightarrow X_{s} \gamma\right)=(3.73 \pm 0.30) \times 10^{-4}
$$

[Misiak, Gambino, 01]

- partial inclusion of NNLO terms $\left[m_{c}{ }^{\text {pole }} \rightarrow m_{c}(\mu)\right]$
- error estimate includes an educated guess on NNLO terms

A great success for the SM...

To be compared with:

$$
\begin{aligned}
& \left(3.21 \pm 0.43 \pm 0.27_{-0.10}^{+0.18}\right) \times 10^{-4} \text { CLEO '01 } \\
& \left(3.36 \pm 0.53 \pm 0.42_{-0.54}^{+0.50}\right) \times 10^{-4} \text { BELLE '01 } \\
& \left(3.88 \pm 0.36 \pm 0.37_{-0.23}^{+0.43}\right) \times 10^{-4} \text { BABAR '02 } \\
& (3.34 \pm 0.38) \times 10^{-4} \text { W.A. }
\end{aligned}
$$

Putting all the ingredients together:

Most recent SM th. estimate:
$B\left(B \rightarrow X_{s} \gamma\right)=(3.73 \pm 0.30) \times 10^{-4}$
[Misiak, Gambino, 01]

- partial inclusion of NNLO terms
$\left[m_{c}{ }^{\text {pole }} \rightarrow m_{c}(\mu)\right]$
- error estimate includes an educated guess on NNLO terms

To be compared with:

$$
\begin{aligned}
& \left(3.21 \pm 0.43 \pm 0.27_{-0.10}^{+0.18}\right) \times 10^{-4} \text { CLEO '01 } \\
& \left(3.36 \pm 0.53 \pm 0.42_{-0.54}^{+0.50}\right) \times 10^{-4} \text { BELLE '01 } \\
& \left(3.88 \pm 0.36 \pm 0.37_{-0.23}^{+0.43}\right) \times 10^{-4} \text { BABAR '02 } \\
& (3.34 \pm 0.38) \times 10^{-4} \text { W.A. }
\end{aligned}
$$

A great success for the SM... and a lot of problems for many of its extensions !
E.g.: strong constraints on the SUSY mixing terms which could induce $\mathrm{A}_{\mathrm{CP}}\left(\phi K_{S}\right) \neq \mathrm{A}_{\mathrm{CP}}\left(\psi K_{S}\right)$

In my opinion $\mathrm{A}_{\mathrm{CP}}\left(\phi K_{S}\right)<0$ requires a rather ugly conspiracy

Masiero \& Murayama + many others...

Several th. collaborations started to analyse the missing pieces necessary to predict $B\left(B \rightarrow X_{s} \gamma\right)$ at NNLO within the SM [Misiak \& Co.] \Rightarrow long \& challenging project...

Beside the rate, very interesting short-distance info can also be extracted from the inclusive CP asymmetry:
$a_{C P}=\frac{\Gamma(\bar{B})-\Gamma(B)}{\Gamma(\bar{B})+\Gamma(B)} \stackrel{(\mathrm{SM})}{\approx} 0.6 \%$
Kagan, Neubert '98
Suppressed within SM by the smalness of $\mathfrak{J}\left(V_{t b}^{*} V_{t s}\right)$ possible large effects ($\sim 10 \%$) with new CPV phases

Present exp. bounds ~ 10\%
\Rightarrow still 1 order of magnitude of possible NP contributions to be explored

- $B \rightarrow X_{s} l^{+} l^{-}$
\Rightarrow Different LL count. than in $B \rightarrow X_{s} \gamma \quad\left[Q_{9} \leftrightarrow Q_{1-6}\right.$ starts @ 1 loop \Rightarrow NNLO simpler $]$
\Rightarrow Sensitivity to e.w. box \& Z penguins not present in $B \rightarrow X_{s} \gamma \quad\left[Q_{9} \& Q_{10}\right]$
\Rightarrow Dangerous long-distance contamination from real $c \bar{c}$ states [$\left\langle Q_{i}\right\rangle \&$ non-pert. effects more complicated than in $B \rightarrow X_{s} \gamma$]

Very recently full NNLO analyses available for both dilepton spectrum \& lepton FB asymmetry:
I. $C_{i}\left(M_{W}\right)$ Bobeth, Misiak \& Urban, ${ }^{\prime} 00$;
II. RGE Gambino, Gorban, Haisch, '03;
III. $\left\langle Q_{i}\right\rangle$ Asatryan, Asatrian, Greub, Walker '01-'02; Ghinculov, Hurh, G.I. \& Yao, '02-'03;
∇
Residual scale dependence in the dilepton spectrum: from 3% to 7% (depending on the kin. region); even smaller for the FB asymmetry

The dilepton spectrum
We can define two clean perturbative windows free from large non-pert. effects:

The two regions are affected by different th. (systematic) errors and probe different s.d. structures

It would be very useful to quote separately the measurements of the BR in these two regions

NNLO SM predictions:

$B\left(B \rightarrow X_{s} l^{+} l^{-} ; q^{2} \in[1,6] \mathrm{GeV}^{2}\right)=(1.60 \pm 0.19) \times 10^{-6}$

$$
B\left(B \rightarrow X_{s} l^{+} l^{-} ; q^{2}>14.4 \mathrm{GeV}^{2}\right)=(3.84 \pm 0.75) \times 10^{-7}
$$

Ghinculov, Hurh,
G.I. \& Yao, '02-'03;

This summer B factories have reached the 5σ level (discovery level) on the combined ($l=e, \mu$) (semi-) inclusive branching ratios:
$\left(6.1 \pm 1.4_{-1.1}^{+1.4}\right) \times 10^{-6}$ BELLE '03
$\left(6.3 \pm 1.6_{-.5}^{+1.8}\right) \times 10^{-6}$ BABAR '03
$\left(6.2 \pm 1.1_{-1.3}^{+1.6}\right) \times 10^{-6}$ W.A.

Extrapolated result, to be compared with $B\left(B \rightarrow X_{l^{\prime}}{ }^{+} l^{-}\right)^{\mathrm{SM}}=(4.2 \pm 0.7) \times 10^{-6}$
$\Rightarrow \underline{\text { Promising prospects for the future! }} \Leftarrow$
N.B.: another interesting candidate for a large $\mathrm{A}_{\mathrm{CP}}\left(\phi K_{S}\right) \neq \mathrm{A}_{\mathrm{CP}}\left(\psi K_{S}\right)$ namely a non-standard $\quad b \rightarrow s \quad Z$-penguin [G. Hiller et al.] is already strongly constrained by these data [$\mathrm{A}_{\mathrm{CP}}\left(\phi K_{S}\right)<0$ excluded]

The lepton FB asymmetry

Probably the most interesting observable in $B \rightarrow X_{s} l^{+} l^{-}$decays:

$$
A_{F B}=\int \frac{d^{2} B\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)}{d s d \cos \vartheta} \operatorname{sgn}(\cos \vartheta) \propto \mathfrak{R}\left[C_{10}^{*}\left(s C_{9}^{e f f}(s)+r(s) C_{7}\right)\right]
$$

- direct access to the relative phases of the C_{i}
- proportional to C_{10} (interf. of axial \& vector currents)
\Rightarrow small QCD corrections

Ghinculov, Hurh, G.I. \& Yao, '02;

Asatrian et al. '02

The lepton FB asymmetry

Probably the most interesting observable in $B \rightarrow X_{s} l^{+} l^{-}$decays:

$$
\begin{gathered}
A_{F B}=\int \frac{d^{2} B\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)}{d s d \cos \vartheta} \operatorname{sgn}(\cos \vartheta) \propto \mathfrak{R}\left[C_{10}^{*}\left(s C_{9}^{e f f}(s)+r(s) C_{7}\right)\right] \\
\theta=\text { angle between } \mu^{+} \& B \text { momenta }
\end{gathered}
$$

- a very useful probe of non-standard scenarios:

Ali et al. '01

- Exclusive FCNC B decays

The accuracy on exclusive FCNC B decays of the type $B \rightarrow H+\left(\gamma, l^{+} l^{-}\right)$ depends on the th. control of $B \rightarrow H$ hadronic form factors.
\Rightarrow several progress in the last few years [HQS, SCET \Leftrightarrow LCSR, Lattice] but typical errors still ~ 30\%

The most difficult exclusive observables are the total branching ratios
\Rightarrow the s.d. info which we can extract from the latest data on $\mathrm{B}\left(B \rightarrow X_{s} l^{+} \zeta\right)$ is already superior to what we could get from $\mathrm{B}\left(B \rightarrow K^{*} l^{+} l^{-}\right) \& \mathrm{~B}\left(B \rightarrow K l^{+} l^{-}\right)$

However, f.f. uncertainties can be considerably reduced in appropriate ratios or differential distributions
\Rightarrow especially interesting when the corresponding inclusive observable is not exp. accessible, e.g:

$$
\bar{A}_{\mathrm{FB}}\left(B \rightarrow K^{*} l^{+} l^{-}\right) \quad \mathrm{R}\left(\rho \gamma / K^{*} \gamma\right)=\frac{\mathrm{B}(B \rightarrow \rho \gamma)}{\mathrm{B}\left(B \rightarrow K^{*} \gamma\right)}
$$

A) Properties of $A_{F B}(s)$ indep. from the detailed structure of the form factors:

- $A_{F B}(s)=0$ for $s=q^{2} / m_{b}{ }^{2} \sim C_{7} / C_{9}$

Burdman '98; Ali et al. '00;
Beneke, Feldmann, Seidel '01 \longrightarrow

- Within the $\operatorname{SM} A_{F B}{ }^{(\bar{B})}(s)<0$ for $s<s_{0}$ \& $A_{F B}{ }^{(\bar{B})}(s)=-A_{F B}{ }^{(B)}(s)$ (modified by new CPV phases)

A) Properties of $A_{F B}(s)$ indep. from the detailed structure of the form factors:
- $A_{F B}(s)=0$ for $s=q^{2} / m_{b}^{2} \sim C_{7} / C_{9}$

> Burdman '98; Ali et al. '00; Beneke, Feldmann, Seidel '01 \longrightarrow

- Within the $\operatorname{SM} A_{F B}{ }^{(\bar{B})}(s)<0$ for $s<s_{0} \quad-0.1$ \& $A_{F B}{ }^{(\bar{B})}(s)=-A_{F B}{ }^{(B)}(s)$ (modified by new CPV phases)

B) $\mathrm{R}\left(\rho \gamma / K^{*} \gamma\right)=\frac{\mathrm{B}(B \rightarrow \rho \gamma)}{\mathrm{B}\left(B \rightarrow K^{*} \gamma\right)}$

$$
=\frac{\left|V_{t d}\right|^{2}}{\left|V_{t S}\right|^{2}} \frac{\left(M_{B}^{2}-M_{\rho}^{2}\right)^{3}}{\left(M_{B}^{2}-M_{K}\right)^{2}} \zeta^{2}(1-\Delta R)
$$

f.f. ratio at $q^{2}=0$ in the HQ limit

$$
O\left(\alpha_{s}\right) \& \text { power }
$$ suppress. terms

($\pm 10 \%$)
$\mathrm{R}\left(\rho \gamma / K^{*} \gamma\right)<0.047$ [90\%CL, BaBar '03]

$$
\text { - } B_{(s, d)} \rightarrow l^{+} l^{-}
$$

A special case among exclusive B decays

- No vector-current contribution [th. error of the s.d. calculation ~ 1% !]
- Hadronic matrix element relatively simple [f_{B} within the SM]
- Very clean signature
- Strong sensitivity to scalar currents beyond the SM
\Rightarrow order-of-magnitude enhancements possible in multi-Higgs models, even without new flavor structures [SUSY @ large tan β]

$$
\begin{aligned}
& B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{S M} \approx 3 \times 10^{-9}<9.5 \times 10^{-7} 90 \% \mathrm{CL} \text { CDF }{ }^{\prime} 03 \\
& B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)^{S M} \approx 1 \times 10^{-10}<1.6 \times 10^{-7} 90 \% \text { CL BELLE }{ }^{\prime} 03
\end{aligned}
$$

Even the present (weak) bounds put very significant constraints on the SUSY param. space \Rightarrow great discovery potential for future searches at hadronic machines!

The flavor problem is one of the most fascinating puzzles in particle physics and rare decays are the key missing pieces which are necessary to reveal the final picture [the underlying flavor symmetry]

Experiments at B factories have just reached a level of precision which will allow us to extract, in a short time, some of these pieces, but this is only the beginning...

