LHCb: Reoptimized Detector & Tracking Performance

Gerhard Raven
NIKHEF and VU, Amsterdam
Representing
the LHCb collaboration

Beauty 2003,
Carnegie Mellon University,
Oct 14-18,
Pittsburgh, PA, USA
The LHCb collaboration has completed all the “detector” TDR’s

- Feb 1996: *LHCb* Letter of Intent
- Sep 1998: Technical Proposal approved
- 2000—2002: Technical Design Reports of all detector subsystems
- Sep 2003: LHCb re-optimization & Trigger TDRs
- Remaining: Computing TDR (next year)
Direct Measurement of angles:
- $\sigma(\sin(2\beta)) \approx 0.03$ from $J/\psi K_s$ in B factories
- Other angles not precisely known

Knowledge of the sides of unitary triangle:
(Dominated by theoretical uncertainties)
- $\sigma(|V_{cb}|) \approx$ few % error
- $\sigma(|V_{ub}|) \approx$ 5-10 % error
- $\sigma(|V_{td}|/|V_{ts}|) \approx$ 5-10% error
 (assuming Δm_s observed)

In case new physics is present in mixing, independent measurement of γ can reveal it…

See Ulrich Uwer’s talk on Saturday for 3 separate examples of the determination of γ at LHCb
(2 of which require B_s mesons…)
LHCb: Forward Spectrometer with:
- Efficient trigger and selection of many B meson decay final states
- Good tracking and Particle ID performance
- Excellent momentum and vertex resolution
- Adequate flavour tagging

Large $b\bar{b}$ production cross section:
$10^{12} b\bar{b}$/year at 2×10^{32} cm$^{-2}$s$^{-1}$

Triggering is an issue

All b hadrons are produced:
- B_u (40%), B_d (40%), B_s (10%),
- B_c and b-baryons (10%)

Many tracks available for primary vertex

Many particles not associated to b hadrons

b hadrons are not coherent: mixing dilutes tagging
Evolution since Technical Proposal

- Reduced material
- Improved level-1 trigger

Single arm forward spectrometer
15 mrad < \theta < 300 mrad (1.8 < \eta < 4.9)

\(X_0 : 40\% \rightarrow 12\% \)
Monte Carlo Generation

- **pp interactions**
 - Minimum bias events from PYTHIA 6.2
 - Hard QCD processes, single and double diffraction
 - Multiple parton interactions tuned to reproduced track multiplicities observed at SPS and Tevatron energies
 - bb events
 - Extracted from minimum bias sample

- **bunch crossings in LHCb**
 - Size of luminous region
 - Simultaneous pp interactions ("pileup")
 - Number of visible interactions \(n \) (in events with at least one) distributed according to
 \[L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}, \langle \nu \rangle = 30 \text{ MHz} \]

 \[\langle n \rangle_{\text{bb \ event}} = 1.42 \]

\[\sigma_{\text{total}} = 100 \text{ mb} \]
\[\sigma_{\text{visible}} = 65 \text{ mb} \]
\[\sigma_{\text{bb}} / \sigma_{\text{visible}} = 0.8\% \]
\[\sigma_{x} = \sigma_{y} = 70 \mu\text{m}, \sigma_{z} = 5 \text{ cm} \]
Simulation and Reconstruction

- Full GEANT 3.2 simulation
 - Complete description from TDRs
- Detector response
 - Based on test-beam data (resolution, efficiency, noise, cross-talk)
 - Spill-over effects included (25 ns bunch spacing)
- Trigger simulation
 - Thresholds tuned to get maximal signal efficiencies at limited output rates of 1 MHz (L0) and 40 kHz (L1)
 - No full HLT simulation (yet)
- Offline reconstruction
 - Full pattern recognition (track finding, RICH reconstr. …)

No true MC info used anywhere!
Simulation and Reconstruction

Simulated samples:
• Dedicated signal samples
• Background samples: 10 M incl. bb events ⇒ 4 min
 30 M min. bias events
Tracking Detectors: **VELO**

- 21 Stations, back-to-back
- R and ϕ sensors
- 220 μm thin silicon
- 180K channels

Pile-Up Stations

Interaction Region $\sigma=5.3$ cm

Cross section at $y=0$: 390 mrad, 60 mrad, 15 mrad

Not required for LHCb acceptance coverage
Tracking Detectors:

- Sensors are located in 2ndary vacuum
- Separated from beams by RF foil (300 µm Al+3% Mg)
- Retractable during injection
Tracking Detectors: VELO

VELO is mounted on movable x-y tables to stay (actively) centered around the beam.
Exit window of VELO is also entry window of RICH-1
Four Layers of Si strip detectors
two stations: Vertical, +5°; -5°, Vertical
Total area of Si: 8.3 m²

Magnet field (0.15 Tm) between VELO + TT allows initial momentum estimate of high IP tracks in Level-1 trigger
→ Field constraint by RICH1 shielding
→ Requires all silicon detector…
Tracking Detectors: Trigger Tracker

198 µm strip pitch, up to 30 cm long strips → 410 µm thick
180K readout channels
Magnet

- dipole
- warm Al conductor
- 4 Tm integrated field
- 4.2 MW
- 1450 t yoke

- All components delivered
- Underground assembly ongoing
Tracking Detectors: T stations

- Split into two systems
 - Inner and Outer Trackers

- particle fluences higher in equatorial plane (bending plane of magnet)
 - extend horizontal coverage of Inner Tracker

- Inner Tracker area
 - covers only 1.3% of sensitive overall tracker area
 - corresponds to 20% of all tracks within LHCb acceptance
 - Instrumented with silicon strip detectors

- Outer Tracker area
 - Large area
 - Instrumented with strawtube chambers

\[\sim 6 \times 5 \text{ m}^2 \]
Tracking Detectors: Outer Tracker

- 3 stations with 4 double layers
- 5mm straw tubes
- 50k readout ch.
Tracking Detectors: Inner Tracker

- 3 stations with 4 layers each
- 320µm thin silicon
- 198µm readout pitch
- 130k readout ch.
Track finding strategy

Long tracks \Rightarrow highest quality for physics (good IP & p resolution)
Downstream tracks \Rightarrow needed for efficient K_s finding (good p resolution)
Upstream tracks \Rightarrow lower p, worse p resolution, but useful for RICH1 pattern recognition
T tracks \Rightarrow useful for RICH2 pattern recognition
VELO tracks \Rightarrow useful for primary vertex reconstruction (good IP resolution)
Result of track finding

Typical event display:
Red = measurements (hits)
Blue = all reconstructed tracks

20–50 hits assigned to a long track:
98.7% correctly assigned

Eff = 94%
(p > 10 GeV)

Ghost rate = 3%
(for $p_T > 0.5$ GeV)

Ghosts:
Negligible effect on
B decay reconstruction

On average:
26 long tracks
11 upstream tracks
4 downstream tracks
5 T tracks
26 VELO tracks

Efficiency vs p:

Ghost rate vs p_T:

[Graphs showing efficiency and ghost rate as functions of p and p_T]
$K_S \rightarrow \pi^+\pi^-$ reconstruction

- K_S from $B^0 \rightarrow J/\psi$ K_S
 - 25% decay after TT
 - Not reconstructed
 - 50% decay outside VELO but before TT
 - Use pairs of downstream tracks
 - 25% decay inside VELO
 - Use long and upstream tracks

Combinatorial background removed when K_S combined with J/ψ into a B^0 meson

Entries vs. Invariant mass (MeV/c^2)

- Downstream downstream $\varepsilon = 54\%$ $\sigma = 7$ MeV
- Long downstream $\varepsilon = 75\%$ $\sigma = 4$ MeV
- Long upstream $\varepsilon = 61\%$ $\sigma = 12$ MeV
Primary Vertex Reconstruction

- $b \bar{b}$ production vertex found in 98% of $b \bar{b}$ events
- Multiple primary vertices
 ⇒ use back-pointing of reconstructed B to find correct one

Primary Vertex x,y
- Mean $= 0.4 \pm 0.1 \, \mu m$
- $\sigma_1 = 7.8 \pm 0.2 \, \mu m$
- $\sigma_2 = 18 \, \mu m$ (26.5%)
- σ(core) $\sim 8 \, \mu m$

Primary Vertex z
- Mean $= 8.3 \pm 0.8 \, \mu m$
- $\sigma_1 = 43.9 \pm 1.6 \, \mu m$
- $\sigma_2 = 124 \, \mu m$ (21.8%)
- σ(core) $\sim 45 \, \mu m$
Track Resolution

Impact parameter resolution

\[\sigma_{IP} = 14\mu + 35\mu/p_T \]

Momentum resolution

\[\delta p/p = 0.35\% - 0.55\% \]
Mass Resolution

Need excellent momentum resolution to reject backgrounds by cutting on resonant masses, eg. $B_{(s)}$ mass, D_s mass, J/ψ mass

Mass of $D_s \rightarrow K^+ K^- \pi^-$

$m_{D_s} = 1.97 \text{ GeV}/c^2$

$\sigma_{D_s} = 5.5 \text{ MeV}/c^2$

Mass of $B_s \rightarrow D_s^- (K K \pi) \pi^+$

$\sigma = 14 \text{ MeV}/c^2$

$\sigma_{core} = 12.6 \pm 0.6 \text{ MeV}$
Proper time resolution

- Needed for the observation of CP asymmetries with B_s decays
- Use $B_s \rightarrow D_s \pi^+$
- If $\Delta m_s = 20 \text{ ps}^{-1}$

\[\sigma(\Delta m_s) = 0.011 \text{ ps}^{-1} \]

- Can observe $>5\sigma$ oscillation signal if $\Delta m_s < 68 \text{ ps}^{-1}$ well beyond SM prediction

More physics examples: Ulrich Uwer on Saturday
Example:

B_s \rightarrow D_s K decays

BR(B_s \rightarrow D_s \pi^+)/BR(B_s \rightarrow D_s \rightarrow K^{+}) \sim 12

See next talk by Marco Adinolfi on the LHCb RICH
Trigger Strategy

Level-0:
- p_T of μ, e, h, γ
- 40 MHz
- Calorimeter
- Muon system
- Pile-up system
- 1 MHz

Level-1:
- Impact parameter
- Rough $p_T \sim 20\%$
- 40 kHz
- Vertex Locator
- Trigger Tracker
- Level 0 objects

HLT:
- Final state reconstruction
- Full detector information
- 200 Hz output

See talk by Olivier Callot on Friday on implementation and performance
Calorimeters and Muon System

Ecal: 100% constructed

Hcal: 30% constructed

See talk by Frédéric Machefert on LHCb Calorimeters & Muon system (in ~22 minutes)
Conclusions

- LHC offers great potential for B physics from “day 1” LHC luminosity
- LHCb experiment has been reoptimized:
 - Less material in tracking volume
 - Improved Level1 trigger
- Realistic trigger simulation and full pattern recognition in place
- Tracking performance meets the requirements set by physics goals of the experiment
- LHC startup is now only 3.5 years away
 - Construction of the experiment is well underway
Backup
Figure 1.2: Material seen by a neutral particle from the nominal position of the primary vertex as a function of the pseudo-rapidity at three different z positions, averaged over the azimuthal angle.
Systematic Effects

Possible sources of systematic uncertainty in CP measurement:

- Asymmetry in $b\bar{b}$ production rate
- Charge dependent detector efficiencies…
 - can bias tagging efficiencies
 - can fake CP asymmetries
- CP asymmetries in background process

Experimental handles:

- Use of control samples:
 - Calibrate $b\bar{b}$ production rate
 - Determine tagging dilution from the data:
 - e.g. $B_s \rightarrow D_s \pi$ for $B_s \rightarrow D_s K$, $B \rightarrow K\pi$ for $B \rightarrow \pi\pi$, $B \rightarrow J/\psi K^*$ for $B \rightarrow J/\psi K_s$, etc
- Reversible B field in alternate runs
- Charge dependent efficiencies cancel in most B/\bar{B} asymmetries
- Study CP asymmetry of backgrounds in B mass “sidebands”
- Perform simultaneous fits for specific background signals:
 - e.g. $B_s \rightarrow D_s \pi$ in $B_s \rightarrow D_s K$, $B_s \rightarrow K\pi$ & $B_s \rightarrow K K$, …