LHCb: Reoptimized Detector LHCb & Tracking Performance

Gerhard Raven NIKHEF and VU, Amsterdam Representing the LHCb collaboration

Beauty 2003, Carnegie Mellon University, Oct 14-18, Pittsburgh, PA, USA

The LHCb collaboration has completed all the "detector" TDR's

- Feb 1996: LHCb Letter of Intent
- Sep 1998: Technical Proposal approved
- 2000—2002:Technical Design Reports of all detector subsystems
- Sep 2003: LHCb re-optimization & Trigger TDRs
- Remaining: Computing TDR (next year)

B Physics in 2007

- Direct Measurement of angles:
 - σ(sin(2β)) ≈ 0.03 from J/ψ K_s in B factories
 - Other angles not precisely known
- Knowledge of the sides of unitary triangle:

(Dominated by theoretical uncertainties)

- $\sigma(|V_{cb}|) \approx \text{few }\% \text{ error}$
- σ(|V_{ub}|) ≈ 5-10 % error
- $\sigma(|V_{td}|/|V_{ts}|) \approx 5-10\%$ error (assuming Δm_s observed)
- In case new physics is present in mixing, independent measurement of γ can reveal it...
- See Ulrich Uwer's talk on Saturday for 3 separate examples of the determination of γ at LHCb (2 of which require B_s mesons...)

B Physics @ LHC

√s	14 TeV
L	2x10 ³² cm ⁻² s ⁻¹
σ_{bb}	500 μb
$\sigma_{ m inel}$ / $\sigma_{ m b\overline{b}}$	160

 \odot Large $b\bar{b}$ production cross section:

10¹² bb/year at 2x10³² cm⁻²s⁻¹

- Triggering is an issue
- © All b hadrons are produced:
 - B_u (40%), B_d(40%), B_s(10%),
 - $\rm B_{c}$ and b-baryons (10%)
- Many tracks available for primary vertex
- Many particles not associated to b hadrons
- B hadrons are not coherent: mixing dilutes tagging

LHCb: Forward Spectrometer with:

- Efficient trigger and selection of many B meson decay final states
- Good tracking and Particle ID performance
- Excellent momentum and vertex resolution
- Adequate flavour tagging

Evolution since Technical Proposal

Monte Carlo Generation

pp interactions

- Minimum bias events from PYTHIA 6.2
 - Hard QCD processes, single and double diffraction
 - Multiple parton interactions tuned to reproduced track multiplicities observed at SPS and Tevatron energies
- bb events
 - Extracted from minimum bias sample
- bunch crossings in LHCb
 - Size of luminous region
 - Simultaneous pp interactions ("pileup")
 - number of visible interactions n (in events with at least one) distributed according to

$$L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}, = 30 \text{ MHz}$$

At least two tracks reconstructible in whole spectrometer

$$\sigma_{bb} / \sigma_{visible} = 0.8\%$$

$$\sigma_{x} = \sigma_{y} = 70 \ \mu m, \ \sigma_{z} = 5 \ cm$$

 σ_{total} = 100 mb $\sigma_{visible}$ = 65 mb

Simulation and Reconstruction

RICH1

VELO

- Full GEANT 3.2 simulation
 - Complete description from TDRs
- Detector response
 - Based on test-beam data (resolution, efficiency, noise, cross-talk)
 - Spill-over effects included (25 ns bunch spacing)
- Trigger simulation
 - thresholds tuned to get maximal signal efficiencies at limited output rates of 1 MHz (L0) and 40 kHz (L1)
 - No full HLT simulation (yet)
- Offline reconstruction
 - Full pattern recognition (track finding, RICH reconstr. ...)

RICH2

T1 T2 T3

No true MC info

used anywhere!

Geant 3 event display

Simulation and Reconstruction

• Background samples: 10 M incl. bb events \Rightarrow 4 min 30 M min. bias events

•Sensors are located in 2^{dary} vacuum

- •Seperated from beams by RF foil (300 μ m AI+3%Mg)
- •Retractable during injection

Tracking Detectors:

VELO is mounted on movable x-y tables to stay (actively) centered around the beam

Magnet

RICH1

Vertex

Tracker

"annan an

LHCD

300mrad

 μ m strip pitch, up to 30 cm long strips \rightarrow 410 μ m thick 180K readout channels

Magnet

• dipole

- warm AI conductor
- 4 Tm integrated field
- 4.2 MW
- 1450 t yoke
- All components delivered
 Underground assembly ongoing

Tracking Detectors: T stations

- Split into two systems
 - Inner and Outer Trackers
- particle fluences higher in equatorial plane (bending plane of magnet)
 - extend horizontal coverage of Inner Tracker
- Inner Tracker area
 - covers only 1.3% of sensitive overall tracker OT area
 - corresponds to 20% of all tracks within LHCb acceptance
 - Instrumented with silicon strip detectors
- Outer Tracker area
 - Large area
 - Instrumented with strawtube chambers

Tracking Detectors: Inner Tracker

- 3 stations with 4 layers each
- 320µm thin silicon
- 198µm readout pitch
- 130k readout ch.

Track finding strategy

Long tracks

- \Rightarrow highest quality for physics (good IP & p resolution)
- **Downstream tracks**

Upstream tracks

T tracks

VELO tracks

- \Rightarrow needed for efficient K_s finding (good p resolution)
- \Rightarrow lower p, worse p resolution, but useful for RICH1 pattern recognition
- ⇒ useful for RICH2 pattern recognition
- \Rightarrow useful for primary vertex reconstruction (good IP resolution)

$K_S \to \pi^+\pi^-$ reconstruction

Primary Vertex Reconstruction

- $b\overline{b}$ production vertex found in 98% of $b\overline{b}$ events
- Multiple primary vertices
 - \Rightarrow use back-pointing of reconstructed B to find correct one

Track Resolution

Mass Resolution

Need excellent momentum resolution to reject backgrounds by cutting on resonant masses, eg. $B_{(s)}$ mass, D_s mass, J/ψ mass

Calorimeters and Muon System

See talk by Frédéric Machefert on LHCb Calorimeters & Muon system (in ~22 minutes)

Conclusions

- LHC offers great potential for B physics from "day 1" LHC luminosity
- LHCb experiment has been reoptimized:
 - Less material in tracking volume
 - Improved Level1 trigger
- Realistic trigger simulation and full pattern recognition in place
- Tracking performance meets the requirements set by physics goals of the experiment
- LHC startup is now only 3.5 years away
 - Construction of the experiment is well underway

Figure 1.2: Material seen by a neutral particle from the nominal position of the primary vertex as a function of the pseudo-rapidity at three different zpositions, averaged over the azimuthal angle.

Systematic Effects

Possible sources of systematic uncertainty in CP measurement:

- Asymmetry in b-b production rate
- Charge dependent detector efficiencies...
 - can bias tagging efficiencies
 - can fake CP asymmetries
- CP asymmetries in background process

Experimental handles:

- Use of control samples:
 - Calibrate b-b production rate
 - Determine tagging dilution from the data:

e.g. $B_s \rightarrow D_s \pi$ for $B_s \rightarrow D_s K$, $B \rightarrow K \pi$ for $B \rightarrow \pi \pi$, $B \rightarrow J/\psi K^*$ for $B \rightarrow J/\psi K_s$, etc

- Reversible B field in alternate runs
- Charge dependent efficiencies cancel in most B/B asymmetries
- Study CP asymmetry of backgrounds in B mass "sidebands"
- Perform simultaneous fits for specific background signals:
 e.g. B_s->D_sπ in B_s->D_sK , B_s->Kπ & B_s->KK, ...

