

Calorimeter and Muon System

Lepton Identification

Pittsburgh, October 14 – 18, 2003
On Behalf of the LHCb Collaboration

Frédéric MACHEFERT

The LHCb experiment

LHCb is dedicated to the Study of CP violation in the B meson system

- recent reoptimisation
 - VELO, RICH1, Tracking
 - Less material before Calorimeter (~ 70%X₀)

LHCb Calorimeters

Requirements:

- Identification of hadrons, electrons, γ , π^0
- Energy/ Position measurement
- L0 Trigger input : → see talk by O. Callot
 - High sensitivity
 - Fast response (40MHz)
- Scintillator Pad Detector (SPD)

Preshower (PRS) → L0

- ightharpoonup γ / MIP separation (SPD)
- Electron, γ / π (PRS)
- Charged Multiplicity (SPD)
- lue ECAL \rightarrow L0
 - Et of electron, γ
 - \blacksquare π^0 offline reconstruction
- ☐ HCAL → L0
 - Et of hadrons
 - Particle ID

SPD / PRS

Scintillating detector

2.5 X₀ lead converter sandwiched between two scintillator planes (pads)

3 zones: granularity depends on the occupancy

- Cell size: 40.4 / 60.6 / 121.2 mm
- ~ 6000 channels
 - Notice: 3 same zones for ECAL (HCAL: 2 zones)
- **Projective Calorimeters**

- ECAL finds local Et maxima
- SPD/PRS determines electromagnetic nature of energy deposit
- Signal read with MAPMT
- Dynamic range: 0 100 Mips
 - 10 bits (PRS) + 1 bit (SPD)

ECAL

Shashlik technology

- Radiation resistance
- Fast response
- 66 layers of 2mm Pb / 4mm scintillator
 - 25 X_0 , 1.1 λ_1
- WLS fibres transport signal to PMT

ECAL front-end/L0 electronics

- Installed on top of sub-detectors (200rad/y)
- Low noise front-end integrator
- Et range : 0 10GeV (12 bits)

90% of the modules delivered to CERN

HCAL

Longitudinal tiles

- Iron and scintillator tiles
 - 6mm master, 4mm spacer / 3mm scintillator
 - 5.6 λ₁
- 2 zones (1468 channels)
- Signal propagates with WLS fibres to PMT

- Same front-end electronics as ECAL
- 30% of the modules already delivered

ECAL-HCAL Electronics

Scintillator + WLS fibre : fast system

■ Try to measure every bunch crossing : no pileup effect (residue after 25 ns : < 1%)

Digital electronics based on Actel anti-fuse technology

- FPGA configuration insensitive to Single Event Effects
- Protection by Parity code and Triple Voting
- All components have been tested in proton and ion beams

Energy Resolution

Energy Resolution of series modules (test beam measurements)

Calorimeter Performances : π^0 reconstruction

 \square π^0 reconstruction efficiency

Resolved π^0 (2 clusters)

 π^0 efficiency inside detector acceptance ~ 50%

Muon System

Requirements

- Muon triggering (L0)
 - Fast measurement / Bunch crossing id.
 - High efficiency (down to p=5GeV/c)
 - Pt resolution ~ 20%
- Muon offline identification
 - Tagging + reconstruction
 - ε>90%, mid-id<1.5%

Layout

- 5 stations : 1x(2 layers)+ 4x(4 layers)
- Projective geometry
- ☐ Granularity : Stations divided in 4 regions
 - X-dim : L0 pt resolution
 - Y-dim : background rejection
 - Logical pads from logical channels
- **435m² 1380 chambers 26k channels**

MWPC

MWPC

- Wire/cathode reading
- 2mm wire pitch ε =99% (20ns-2 gaps)
- Time resolution: 4ns

M1 radiation length: 0.15X₀

(Nomex Honeycomb)

Central Part M1 (0.6m²): Triple-Gem?

Pre-series MWPC

Muon system electronics

- Muon electronics Architecture
 - Physical Channels : 120k
 - Logical pads : 26k
 - Made from
 - strip crossing
 - physical pads
 - L0 / L1 / DAQ

- MWPC pre-series production started
- Several sites are ready (tooling and clean room) for production
- Electronic Architecture has been reviewed and approved
 - Final version of most chips has been received

Lepton identification : Tracking

Tracking performance

ε=94 % - P>10GeV

Electron Identification (I)

Require impact of a track near a calorimeter cluster

Build 4 parameters:

Electron Identification (II): combined analysis

Combine Calo + Rich + Muon

■
$$ε(e)=95\% - ε(π\rightarrow e)=0.7\%$$

Muon Identification (I)

- Definition of Fields of Interest around track extrapolation
- Require hits in # stations in FOI

Momentum (GeV)	Muon Stations
3 < P < 6	M2 + M3
6 < P < 10	M2 + M3 + (M4 or M5)
P > 10	M2 + M3 + M4 + M5

• $\epsilon(\mu) = 94.3\% - \epsilon(\pi \rightarrow \mu) = 2.9\%$

Estimator to further reject pions

Muon Identification (II)

Combine Muon+Rich+Calo

Further improves selection wrt FOI only

□ J/Ψ →
$$\mu^+$$
 μ^- ($B_s^{\ 0}$ → J/Ψ Φ)
□ $\epsilon(\mu)=93\%$ - $\epsilon(\pi\to\mu)=1\%$

Conclusion

Calorimeter

- Complementary systems
 - SPD / PRS / ECAL / HCAL
- LO
- Fast / sensitive / efficient / robust

Muon system

- Simple (all MWPC) / robust
- LO
- Logical channel : no geometrical ambiguity

Lepton Identification (B_s⁰ → J/Ψ Φ)

- Electrons : $ε(e) = 95\% ε(π \rightarrow e) = 0.7\%$
- Muons : $ε(μ) = 93\% ε(π \rightarrow μ) = 1\%$

LHCb will be ready for data taking in 2007 at LHC start-up

- Detector production is on schedule
- Detector installation starts at the end of next year (magnet installation ongoing)

Backup Slides

The LHCb experiment

■ LHCb is dedicated to the Study of CP violation in the B meson system

- pp collisions at \sqrt{s} = 14 TeV
- forward bb production correlated
- $\sigma_{total} \sim 100 \text{ mb} \rightarrow \text{Int. Rate} : 2x10^7 \text{Hz}$
 - $\sigma_{bb} \sim 500 \ \mu b$, $\sigma_{inel} \sim 80 \ mb$
 - S/B~1%
 - 10¹² bb pairs per year

LHCb

- Mostly single interactions (PileUp Veto)
 - \bullet L_{nom.} = 2x10³²cm⁻².s⁻¹
- 12 mrad < θ < 300 mrad
- efficient trigger (L0~1MHz, L1~40kHz)
- recent Re-optimisation
 - VELO, RICH1, Tracking
 - Less material before Calorimeter

Lepton identification: Tracking

Tracking performance

ε=94 % - P>10GeV

~ 3% - Ptcut=0.3GeV

Lepton Identification Robustness

Electrons (Calo effects)

- Coherent / incoherent noise increase
 - +50 up to +100%
- Dead channels
 - ◆ 1%(PRS/SPD) 0.2% (ECAL/HCAL)
- Channel gain error
 - **+** +50%
- No re-tuning (nominal reference histo)

$$\epsilon(e)$$
 loss of 2.5% $\epsilon(\pi \rightarrow e) = 0.7\% \rightarrow 1\%$

- **Electrons (ex. of track multi. Effect)**
 - Increase track multiplicity by x2

$$\epsilon(e)$$
 unaffected $\epsilon(\pi \rightarrow e) = 0.7\% \rightarrow 1\%$

Muons (Muon system effects)

- Increase low energy background by x5
- No re-tuning

$$\epsilon(\mu)$$
 = 94 % unaffected $\epsilon(\pi \rightarrow \mu)$ = 2.9 % \rightarrow 11.7 %

After algorithm re-tuning

$$\epsilon(\mu)$$
 loss of 7% $\epsilon(\pi \rightarrow \mu)$ back to 2.9 %

