CP Violation Beyond the Standard Model

David London Université de Montréal

October 17, 2003 Beauty 2003

Discovery/Diagnostics

Examine CP violation beyond the SM in the context of future hadron colliders. Need to consider the following question: will NP will be discovered directly or not?

- No direct evidence for NP at hadron colliders. Study of B physics: discovery signals for NP. (Model independent)
- NP produced directly at hadron colliders. Study of *B* physics: diagnostic tests of this NP. (Model dependent)

Both possibilities must be considered. [see Bob Cahn's talk]

New Physics & CP Violation

 \exists many models of NP $\Longrightarrow \exists$ many effects on *B* decays.

- $b \to s$ FCNC: $B^0_s \bar{B}^0_s$ mixing, $b \to s$ penguin
- $b \to d$ FCNC: $B^0_d \bar{B}^0_d$ mixing, $b \to d$ penguin
- tree-level decays: $b \to c\bar{q}q'$, $b \to u\bar{q}q'$.

(Of course, any particular NP model may have all types of effects.)

Look for new CP-violating effects in all three areas. Concentrate principally on those measurements which can be made at hadron colliders.

 $B^0_{\scriptscriptstyle A}(t) o \phi K_{\scriptscriptstyle S}$

[Grossman] Hint of discrepancy in $B_d^0(t) \rightarrow \phi K_s$ \implies NP in $\overline{b} \rightarrow \overline{s}s\overline{s}$ penguin amplitude, i.e. NP in $b \rightarrow s$ FCNC.

Many NP models proposed: Z- or Z'-mediated FCNC's, nonminimal SUSY, SUSY with R-parity violation, LR symmetric models, anomalous t-quark couplings. G. Hiller; A. Datta; M. Ciuchini, L. Silvestrini; M. Raidal, ...

If effect confirmed, want to distinguish among these models, either through other B-physics measurements, or through direct searches at hadron colliders.

One important question: is only the $\overline{b} \to \overline{s}s\overline{s}$ decay affected, or are all $b \to s$ FCNC amplitudes affected? In particular, is there NP in $B_s^0 - \overline{B}_s^0$ mixing? Can check this through other B measurements.

$b \rightarrow s$ FCNC CP Tests

Important job for hadron colliders: study $B_s^0 - \bar{B}_s^0$ mixing. Note: need to be able to resolve oscillations in B_s system. Once shown that can do this, can turn to CP tests involving B_s^0 mesons.

Note: even if NP discovered directly, cannot test the CP nature of the NP couplings to ordinary particles. This is the domain of B physics.

- $B_s^0(t) \rightarrow D_s^+ D_s^-$, $J/\psi\phi$. In SM, weak phase of $B_s^0 \bar{B}_s^0$ mixing is $\simeq 0$. Any CP asymmetry in these modes is sign of phase in $B_s^0 \bar{B}_s^0$ mixing \Longrightarrow NP.
- $\mathcal{A}_{CP}^{mix}(B_s^0(t) \to D_s^{\pm}K^{\mp})$ measures γ . Possibly the first direct measurement of γ .

R. Aleksan, I. Dunietz, B. Kayser

Compare to measurement of γ at B-factories from $\mathcal{A}_{CP}(B^{\pm} \to DK^{\pm})$. Discrepancy points to NP in $B_s^0 - \bar{B}_s^0$ mixing.

• $\mathcal{A}_{CP}^{mix}(B_s^0(t) \to \phi \phi)$: analogous to $B_d^0(t) \to \phi K_s$. (Need angular analysis: more below.) In SM, expect CP asymmetry $\simeq 0$. Measurement of nonzero asymmetry \Longrightarrow NP in $B_s^0 - \bar{B}_s^0$ mixing and/or $b \to s$ penguin. In all cases, the NP must have new phases.

Note: not all models of NP predict new phases. For example, in the MSSM with minimal flavour violation, there are no new phases — the couplings of all SUSY particles track the CKM matrix.

Aside: Suppose one measures $\mathcal{A}_{CP}^{mix}(B_s^0(t) \to \Psi \phi)$ \implies extract CKM phase χ (~ 2 – 5%). Within SM,

$$\sin \chi = \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{\sin \beta \sin(\gamma - \chi)}{\sin(\beta + \gamma)}$$

A discrepancy points to the presence of NP (though we don't know where). R. Aleksan, B. Kayser, D.L.

Direct CP Asymmetries

Other tests for NP: direct CP asymmetries. There are several decays which have a single amplitude in SM. Many examples: $B \rightarrow J/\psi K$, ϕK ; $B_d^0 \rightarrow D_s^+ D^-$; $B_s^0 \rightarrow D_s^+ D_s^-$; $B_c^+ \rightarrow J/\psi \pi^+$, etc. If find direct CP violation, implies the presence of a NP decay amplitude (penguin or tree).

One particularly useful decay: $B^+ \to \pi^+ K^0$. In SM, expect $|A(B^+ \to \pi^+ K^0)| = |A(B^- \to \pi^- \bar{K}^0)|$. Discrepancy in BR's points to NP, specifically in $b \to s$ penguin. In this case the transition $\bar{b} \to \bar{s}d\bar{d}$ is affected. (Note: there is also a hint of NP in $B \to K\pi$ [Grossman]. This is a good way of testing for this NP.)

Many models of NP affect $b \rightarrow s$ or $b \rightarrow d$ penguin amplitudes; fewer affect tree amplitudes. A complete study of direct CP asymmetries will probe various NP models. If NP has already been found, good way to study the new couplings.

Potential problem with direct CP asymmetries:

 $\mathcal{A}_{CP}^{dir} \propto \sin\phi\sin\delta \;,$

where δ is the strong phase difference between the SM and NP amplitudes. If $\delta = 0$, $\mathcal{A}_{CP}^{dir} = 0$, even if \exists a NP contribution.

Triple Products

Even if $\mathcal{A}_{CP}^{dir} = 0$, can find NP by measuring the triple-product correlation $\bar{\varepsilon}_1^{*T} \times \bar{\varepsilon}_2^{*T} \cdot \hat{p}$ in the corresponding $B \to V_1 V_2$ decays (V_1 and V_2 are vector mesons). TP's complementary to direct CP asymmetries:

 $\mathcal{A}_T \propto \sin\phi\cos\delta$.

Unlike \mathcal{A}_{CP}^{dir} , triple product doesn't vanish if $\delta = 0$.

TP's are odd under time reversal (T), can be faked by strong phases. To obtain true CP-violating signal: compare TP in $B \rightarrow V_1 V_2$ with that in $\overline{B} \rightarrow \overline{V}_1 \overline{V}_2$. The CP-violating TP is found by adding the two T-odd asymmetries:

$$\mathcal{A}_T \equiv \frac{1}{2} (A_T + \bar{A}_T) \; .$$

Thus, neither tagging nor time dependence is necessary to measure TP's – can in principle combine measurements of charged and neutral B decays.

Can obtain TP's by performing an angular analysis of the $B \rightarrow V_1 V_2$ decay. Note: a full angular analysis not necessary.

Triple Products in SM

Which $B \rightarrow V_1 V_2$ decays are expected to yield large TP's in the SM? Answer: None! G. Valencia; G. Kramer, W. Palmer; D. Atwood, A. Soni; A. Datta, D.L., ...

- 1. Decays with a single weak amplitude: e.g. $B \rightarrow J/\psi K^*$, $B_s^0 \rightarrow \phi \phi$, $B_s^0 \rightarrow D_s^* D_s^*$, $B_c^+ \rightarrow J/\psi \rho^+$, etc. No TP's expected. Model-independent.
- 2. Color-allowed decays with two weak amplitudes: e.g. $\bar{B}_d^0 \to D^{*+}D^{*-}$, $\bar{B}_s^0 \to D_s^{*+}D^{*-}$, $\bar{B}_s^0 \to K^{*+}K^{*-}$, $B_c^- \to \bar{D}^{*0}\rho^-$, $B_c^- \to \bar{D}^{*0}K^{*-}$, etc. Within (naive) factorization, TP's expected to vanish (even though there are two decay amplitudes with a relative weak phase). Nonfactorizable corrections expected to be very small for such decays. Predictions of tiny TP's robust.
- 3. Color-suppressed decays with two weak amplitudes: e.g. $B^- \to \rho^0 K^{*-}$, $\bar{B}^0_s \to \phi K^*$, $B^-_c \to J/\psi D^{*-}$, etc. Nonfactorizable effects may be large. We have tried to be conservative in our estimates of such effects, and still find tiny TP's for such decays. Clearly model-dependent. Note: in any case BR's for such decays are very small.

Triple Products: New Physics

All TP's in SM expected to vanish or be very small in SM \implies excellent place to search for new physics!

Within factorization, if large TP found, indicates new physics with large couplings to the right-handed *b*-quark. Many new-physics models, though not all, have such couplings.

D. Atwood, A. Soni; A. Kagan; A. Datta, D.L.

Example: $A_{CP}(J/\psi K_S) \neq A_{CP}(\phi K_S)$. One explanation: contributions to $B \rightarrow \phi K_S$ from SUSY with R-parity violation. If so, will also contribute to $B \rightarrow \phi K^* \Longrightarrow$ TP's. In SM, TP's vanish; in this model of new physics, can get very large TP asymmetries: 15–20%!

Triple products are excellent diagnostic tests for new physics. Some NP models predict large TP's \implies null measurements can strongly constrain (or eliminate) such models.

Time-Dependent Angular Analysis

Consider V_1V_2 state to which both B and \overline{B} can decay (e.g. $B_s^0(t) \to \phi\phi$). Can get much more information if a time-dependent angular analysis of the decay $B^0(t) \to V_1V_2$ can be performed.

D.L, N. Sinha, R. Sinha

In this case there are many more NP signals than just direct CP violation and TP's. In fact, there are a total of 12 such signals. If the NP conspires to make direct CP violation and TP's small, can still find it through one of the other signals.

Furthermore: if a signal for NP is found, there is enough information to obtain a lower bound on the NP parameters. Extremely useful: get direct information on the NP through measurements in the B system.

$$\begin{split} & \boldsymbol{B}_{d,s}^{0} \to \boldsymbol{K}^{(*)} \bar{\boldsymbol{K}}^{(*)} \\ & \text{Consider } B_{d}^{0} \to K^{0} \bar{K}^{0} \text{: pure } b \to d \text{ penguin:} \\ & A = P_{u} V_{ub}^{*} V_{ud} + P_{c} V_{cb}^{*} V_{cd} + P_{t} V_{tb}^{*} V_{td} \\ & = \mathcal{P}_{uc} e^{i\gamma} e^{i\delta_{uc}} + \mathcal{P}_{tc} e^{-i\beta} e^{i\delta_{tc}} \\ & \text{Note: } \mathcal{P}_{uc} \text{ and } \mathcal{P}_{tc} \text{ include CKM info.} \\ & \text{4 unknowns: } \mathcal{P}_{uc}, \mathcal{P}_{tc}, \Delta \equiv \delta_{uc} - \delta_{tc}, \boldsymbol{\alpha}. \text{ But there} \\ & \text{are only 3 observables in } B_{d}^{0}(t) \to K^{0} \bar{K}^{0}. \\ & \text{Now consider } B_{s}^{0} \to K^{0} \bar{K}^{0} \text{: pure } b \to s \text{ penguin:} \\ & A = P_{u}^{(s)} V_{ub}^{*} V_{us} + P_{c}^{(s)} V_{cb}^{*} V_{cs} + P_{t}^{(s)} V_{tb}^{*} V_{ts} \\ & = \mathcal{P}_{uc}^{(s)} e^{i\gamma} e^{i\delta_{uc}^{(s)}} + \mathcal{P}_{tc}^{(s)} e^{i\delta_{tc}^{(s)}}. \\ & \text{Note: } \mathcal{D}^{(s)} \text{ is paglicible compared to } \mathcal{D}^{(s)} \text{ Thereform} \end{split}$$

Note: $\mathcal{P}_{uc}^{(s)}$ is negligible compared to $\mathcal{P}_{tc}^{(s)}$. Therefore the measurement of $B(B_s^0 \to K^0 \bar{K}^0)$ gives $|\mathcal{P}_{tc}^{(s)}|$.

Point: can relate $|\mathcal{P}_{tc}^{(s)}|$ to \mathcal{P}_{tc} . Gives 4 measurements, 4 unknowns \Longrightarrow can extract α from $B_{d,s}^0 \to K^{(*)}\bar{K}^{(*)}$. Method more accurate if we use several final $K\bar{K}$ states – theoretical error is small, at most 5% and may well be even smaller. A. Datta, D.L. Compare this value of α with that obtained elsewhere (e.g. $\pi\pi$, $\rho\pi$). A discrepancy would point to NP in the $b \rightarrow d$ or $b \rightarrow s$ penguin.

Experimental considerations:

- Branching ratios $\sim 10^{-6}$.
- K^* , \bar{K}^* detected through their decays to charged π 's and K's only \Longrightarrow good K/π separation.
- No π^0 detection needed.

Method appropriate for hadron colliders.

Triple Products in Λ_b **Decays**

Look at decays $\Lambda_b \to F_1 P$ and $F_1 V$, where F_1 is a fermion $(p, \Lambda, ...), P$ is a pseudoscalar $(K^-, \eta, ...), V$ is a vector $(K^{*-}, \phi, ...)$.

W. Bensalem, A. Datta, D.L.

 $\Lambda_b \to F_1 P$: one TP possible: $\vec{p}_{F_1} \cdot (\vec{s}_{F_1} \times \vec{s}_{\Lambda_b})$. $\Lambda_b \to F_1 V$: 3 spins, 1 momentum \Longrightarrow 4 possible TP's.

Within factorization, require right-handed coupling to *b*-quark to obtain TP. For certain F_1P final states, one can "grow" a sizeable RH current due to Fierzing certain operators. However, for F_1V final states, there are no such RH currents \Longrightarrow all TP's expected to vanish in SM for $\Lambda_b \to F_1V$ decays.

Find: $\mathcal{A}_T^{pK} = -18\%$, but TP's for all other decays $(pK^{*-}, \Lambda\eta, \Lambda\eta', \Lambda\phi)$ are expected to be small, at most $O(1\%) \Longrightarrow$ good place to look for NP. Can use such TP's as a diagnostic tool for NP.

Inclusive partial rate asymmetries can be calculated reliably in the SM:

 $b
ightarrow s\gamma$, $b
ightarrow d\gamma$

 $\mathcal{A}_{CP}^{dir}(b \to s\gamma) = 0.6\% ,$ $\mathcal{A}_{CP}^{dir}(b \to d\gamma) = -16\% .$

If these are found to differ from their SM values \implies NP. Large deviations possible in several models of NP. A. Kagan, M. Neubert; K. Kiers, A. Soni, G.-H. Wu

Exclusive partial rate asymmetries $B \to K^* \gamma$, $B \to \rho \gamma$ not known as well — there are important bound-state corrections. However, if significant deviations from above values found for exclusive decays \Longrightarrow NP. In particular, expect tiny asymmetry in $B \to K^* \gamma$. C. Greub, H. Simma, D. Wyler

Can also consider mixing-induced CP asymmetries (e.g. $B_d^0(t) \rightarrow \rho \gamma$, $B_s^0(t) \rightarrow \phi \gamma$). In the SM the photon polarization is opposite for B and \overline{B} decays \implies no interference. That is, $\mathcal{A}_{CP}^{mix}(b \rightarrow s \gamma, b \rightarrow d \gamma) \simeq 0$ in SM. However, can get significant \mathcal{A}_{CP}^{mix} in certain models of NP (e.g. LRSM, SUSY, exotic fermions).

D. Atwood, M. Gronau, A. Soni

Conclusions

There are many, many signals of NP in B/Λ_b processes.

There are many ways of determining which types of NP might be responsible for these signals. It is quite likely that we will have a fairly good idea of what kind of NP is present in these decays.

Hadron colliders have a significant role to play in the discovery of NP, as well as in its identification. Direct searches are complementary to the study of B processes.