

Status & Prospects

David Asner University of Pittsburgh

Beauty '03 – 9th International Conference on B-Physics at Hadron Machines

Charm measurements

Precise charm absolute branching ratio measurementsLeptonic decays:decay constants f_D and f_{Ds}Semileptonic decays:form factors, V_{cs}, V_{cd}, test unitarityHadronic decays:normalize B physics

QCD studies

Precise measurements of quarkonia spectroscopy

Searches for glue-rich exotic states: Glueballs and hybrids

Probes for Physics beyond the Standard Model

D-mixing, CP Violation, rare D decays

Possible additions to Run Plan

 ψ' spectroscopy, τ threshold, Λ_c threshold, R scan

Expected machine performance:

$$E_{beam} \sim 1.2 \text{ MeV at } J/\psi$$

Δ

The CLEO-c Detector

NEW - Inner Drift Chamber

ψ(3770) Hadronic Event

Run Plan

2002 – 2003 Epilogue & Prologue	Upsilons ~1-2 fb ⁻¹ each at $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, and Spectroscopy, matrix elements, Γ_{ee} , η_b , h_c Last run of CLEO III @ $\Upsilon(5S)$ on March 3 rd 2003	~1/2	fb	⁻¹ at Υ (5S)
		>		
	$\psi(3770)$ ~3 fb ⁻¹ ($\psi(3770) \rightarrow DD$)			
Year 1	30 million DD events, 6 million <i>tagged</i> D decays	C		
	310 times MARK III data			
				L
	$\sqrt{s} \sim 4140 \text{ MeV} \sim 3 \text{ fb}^{-1}$			F
Year 2	1.5 million $D_s \overline{D}_s$ events, 0.3 million <i>tagged</i> D_s decays		≻	
	480 times MARK III data, 130 times of BES data			0
				-
Year 3	ψ (3100) ~1 fb ⁻¹			
	1 billion J/ψ decays			C
	170 times MARK III data, 20 times BES II data	J		

CLEO-c Signature

ψ (3770) events are simpler than Υ (4S) events!

Υ(4S) event

ψ(3770) event

 $D^0 \rightarrow K^-\pi^+ D^0 \rightarrow K^+e^-\nu$

The demands of doing physics in the 3 - 5 GeV range are easily met by the existing detector

BUT

B factories: 400 fb⁻¹ \rightarrow ~500M cc̄ by 2005 What is the advantage of running at threshold?

- Charm events produced at threshold are extremely clean
- Large cross section, low multiplicity
- Pure initial state: no fragmentation
- Signal/Background is optimum at threshold

- Double tag events are pristine These events are the key to make absolute BR measurements
- Neutrino reconstruction is clean
- Quantum coherence aids D mixing & CP violation studies

Goal for the decade:

High precision measurements of all CKM matrix elements & associated phases – over-constrain the "Unitary Triangles" Inconsistencies → New Physics !

Many experiments will contribute:

CLEO-c will enable precise 1st column unitarity test & new measurements at B-Factories/Tevatron to be translated into greatly improved CKM precision

CLEO-c: potential to set absolute scale for all heavy quark measurements

50 pb⁻¹ \rightarrow ~1,000 events \rightarrow x2 improvement (stat) on D⁺ \rightarrow K⁻ π^+ π^+ PDG $\delta \mathcal{B}/\mathcal{B}$

Comparison: B Factories & CLEO-c

Stringent test of theory!

p_π

CLEO-c Impact on Semileptonic $\delta \mathcal{B}/\mathcal{B}$

CLEO-c will make significant improvements in the precision with which each absolute charm semileptonic branching ratio is known!

Verify tools for strongly coupled theories Quantify accuracy for application to flavor physics

Uncover new forms of matter – gauge particles as constituents

Glueballs G = $|gg\rangle$ Study fundamentalHybrids H = $|gqq\rangle$ Study fundamental

The current lack of strong evidence for these states is a fundamental issue in QCD \rightarrow Requires detailed understanding of the ordinary hadron spectrum in the 1.5 – 2.5 GeV mass range

Gluonic Matter

• Rare charm decays:

 $D \rightarrow I^+I^-$ (GIM, Helicity), XI⁺I⁻ (GIM)

Sensitivity: 10^{-6} SM rate 10^{-19} , 10^{-16} \Rightarrow Search for New Physics

DD mixing: CKM & GIM Suppressed

B-factory + Fixed Target experiments exploit finite D lifetime

$$\begin{split} &\mathsf{R}(t) = e^{\text{-}t} \left(\mathsf{R}_{\mathsf{Dcsd}} + \mathsf{R}_{\mathsf{Dcsd}} y^{\text{`}1/2} t + \mathsf{R}_{\mathsf{MIX}} t^2\right) \\ &\mathsf{y}^{\text{`}} = \mathsf{y} \mathsf{cos} \delta - \mathsf{x} \mathsf{sin} \delta, \ \mathsf{x}^{\text{`}} = \mathsf{y} \mathsf{sin} \delta + \mathsf{x} \mathsf{cos} \delta \\ &\mathsf{R}_{\mathsf{MIX}} = \frac{1}{2} (\mathsf{x}^2 + \mathsf{y}^2) = \frac{1}{2} (\mathsf{x}^{\text{`}2} + \mathsf{y}^{\text{`}2}) \end{split}$$

CLEO-c cannot measure D lifetime: Exploit quantum coherance

> Sensitive to $\cos \delta \sim \pm 0.07$ and $(2R_{MIX})^{1/2} < 2\%$ @ 95% C.L.

CLEO-c Probes of New Physics

8

`~~

In

5

0

-5

-10

• Rare charm decays:

 $D \rightarrow I^+I^-$ (GIM, Helicity), XI+I^- (GIM)

Sensitivity: 10^{-6} SM rate 10^{-19} , 10^{-16} \Rightarrow Search for New Physics

• DD mixing: CKM & GIM Suppressed

B-factory + Fixed Target experiments exploit finite D lifetime

$$\begin{split} &\mathsf{R}(t) = e^{\text{-}t} \left(\mathsf{R}_{\mathsf{Dcsd}} + \mathsf{R}_{\mathsf{Dcsd}} y^{\text{`}1/2} t + \mathsf{R}_{\mathsf{MIX}} t^2\right) \\ &\mathsf{y}^{\text{`}} = \mathsf{y} \mathsf{cos} \delta - \mathsf{x} \mathsf{sin} \delta, \ \mathsf{x}^{\text{`}} = \mathsf{y} \mathsf{sin} \delta + \mathsf{x} \mathsf{cos} \delta \\ &\mathsf{R}_{\mathsf{MIX}} = \frac{1}{2} (\mathsf{x}^2 + \mathsf{y}^2) = \frac{1}{2} (\mathsf{x}^{\text{`}2} + \mathsf{y}^{\text{`}2}) \end{split}$$

CLEO-c cannot measure D lifetime: Exploit quantum coherance

> Sensitive to $\cos \delta \sim \pm 0.07$ and $(2R_{MIX})^{1/2} < 2\%$ @ 95% C.L.

D^o-D^o Mixing Limits

Focus Kµy

LEΟ Κπ

BaBar Kn

Focus K_π

CP violating asymmetries

Sensitivity: $A_{CP} < 0.01$ for $\Psi(3770) \rightarrow e/\mu$ (CP), CP=K⁺K⁻,K_S π^0 ,K_S ω

• Interference between amplitudes on Dalitz plots such as $D \rightarrow K_S \pi^+ \pi^-$ may provide greater sensitivity to CPV

Intermediate states include

CP+: K_S f₀(600), K_Sf₀(980), K_Sf₀(1370) CP- : K_S ρ , K_S ω

Uncorrelated D's: CP conservation ⇒ interference between CP+ & CP- amplitudes integrates to zero

Correlated D's: CP conservation ⇒ interference between CP+ & CP- amplitudes locally zero

H. Muramatsu *et al.* [CLEO Collaboration.], Phys. Rev. Lett. 89 251802 (2002).

CLEO-c Physics Impact

Crucial Validation of Lattice QCD:

Lattice QCD will be able to calculate with accuracies of 1 - 2%. The CLEO-c decay constant and semileptonic data will provide a "golden" & timely test . QCD & charmonium data provide additional benchmarks.

- Absolute charm branching fractions contribute significant errors to measurements involving b's. CLEO-c can resolve this problem.
- Measuring the relative strong phase between D⁰→K*+K⁻ and D⁰ → K*-K+ is crucial to determining angle γ with B[±] → K[±]D⁰, D⁰ → K*K.
 J. A. Rosner & D. A. Suprun, Phys. Rev. D68 054010 (2003).
- Improved knowledge of CKM elements, which is now not very good

 The potential to observe new forms of matter – glueballs & hybrids – and new physics – D mixing / CP Violation / rare decays – provides a discovery component to the CLEO-c research program.

The CLEO-c Collaboration

Carleton University Carnegie Mellon University Cornell University University of Florida George Mason University University of Illinois University of Kansas University of Minnesota Northwestern University University of Oklahoma University of Pittsburgh University of Puerto Rico Purdue University Rensselaer Polytechnic Institute University of Rochester Southern Methodist University Syracuse University University of Texas - Pan American Vanderbilt University Wayne State University