B Lifetime Results from CDF and D0

Daria Zieminska Indiana University (D0 Collaboration)

Beauty 2003

See also recent CDF talks: Sinead Farrington, EPS, July 03 : Kevin Pitts, LP03, August 03

Outline

- Introduction expectations
- Tevatron Run II B triggers and data
- Inclusive $B \rightarrow J/\psi + X$
- Exclusive $B \rightarrow J/\psi + X$ channels
 - $B^+ \rightarrow J/\psi + K^+$
 - $B^0_d \rightarrow J/\psi + K^*$
 - $B^0_s \rightarrow J/\psi + \phi$
 - $\Lambda_b \rightarrow J/\psi + \Lambda$
- Semileptonic B Decays

B Hadron Lifetimes: Expectations and Existing Data

- In the naive quark spectator model, the decay is a $1 \rightarrow 3$ process common to all *b* hadrons.
- (NLO) QCD predicted deviations in \approx agreement with data

The main goal is to measure the ratios accurately.

B Physics at the Tevatron

Pros

- Large BB cross section:
 - $\sim 100 \ \mu barn \ total$
 - ~ 3-5 μbarn "reconstructible"
- At 4 x 10³¹cm⁻²s⁻¹ → ~150 Hz of "reconstructible" B's
- All B species produced
 Tevatron world best source of B_s and Λ_b
- Production is incoherent
 - reconstruction of both Bs not needed

Cons

- Large background
 - B cross section ~10⁻³ total inelastic
 - special triggers (leptons, displaced tracks)
 - combinatorics in reconstruction
- **Typical kinematic cuts:**
 - $p_T(\mu) > 1.5$ GeV/c for μ 's from J/ ψ
 - $p_T(B) > 5$ (6) GeV/c

Run II at the Tevatron

data available by September shutdown

- Analyses presented here based on:
 - CDF 138 pb ⁻¹ (di-μ trig.);
 - **D0** 114 pb ⁻¹ (di-μ trig.); 12 pb ⁻¹ (single-μ trig.);

Triggers for B Lifetime Studies

• CDF

Di-muon (J/ψ)	$p_{T}(\mu) > 1.5 \text{ GeV/c}$,	η (μ) < 0.7
l + displaced track	p _T (e/μ) > 4 GeV/c p _T (trk) > 2 GeV/c ,	120 μm < d ₀ (trk) < 1 mm
Two displaced tracks	$p_{T}(trk) > 2 \text{ GeV/c}$,	120 μ m < d ₀ (trk) < 1 mm

• **D0**

Di-muon, $p_T(\mu) > 3$ GeV/c, $|\eta(\mu)| < 2.2$ (unprescaled) $p_T(\mu) > 1.5$ GeV/c, $|\eta(\mu)| < 2.2$ (Lum. dependent prescale)

Single μ , $p_T(\mu) > 3-5$ GeV/c, $|\eta(\mu)| < 2.2$ (Lum. dependent prescale)

Displaced tracks – after shutdown

List of Analysis Techniques

• **1D:** bkg template from sideband

(variations: allow $LSB \neq RSB$)

2D: simultaneous fit to (mass, cτ), free bkg parameters

Channel	1D	2D
Inclusive $B \rightarrow J/\psi X$	CDF, D0	
$B^+ \rightarrow J/\psi K^+$	D0	CDF
$B^0_d \rightarrow J/\psi K^*$		CDF, D0
$B_s \rightarrow J/\psi \phi$		CDF, D0
$Λ_b \rightarrow J/ψ \Lambda$	CDF	
Semileptonic	D0	

Inclusive B \rightarrow J/ ψ + X Lifetime (D0)

- Measure: $\lambda_{\psi} = L_{xy} M_{\psi} / p_{T}^{\psi}$
- Need: $\lambda_B = L_{xy} M_B / p_T^B$

Correction factor: $\mathbf{F} = \lambda_{\psi} / \lambda_{B} = \mathbf{M}_{\psi} \mathbf{p}^{B}_{T} / \mathbf{M}_{B} \mathbf{p}^{\psi}_{T}$

MC provides mean $F(p_T^{\psi})$ in slices of p_T^{ψ}

\leftarrow D0 parametrization of $F(p_{T}^{\psi})$

Inclusive $B \rightarrow J/\psi + X$ Lifetime (D0) Fitting technique

Two steps:

- fit λ distribution of the sidebands to get the shape of the background. The bkg parametrization $g_{bkg}(\lambda)$:
 - Prompt
 taken from MC (Gaussian plus exponential tails)
 - (λ >0) and (λ <0) exponentials
- fit λ distribution in the signal region allowing for:
 - bkg distribution $g_{bkg}(\lambda)$
 - Prompt J/ψ (similar to prompt bkg)
 - Exponential decay convoluted with Gaussian ($b \rightarrow J/\psi + X$)

Inclusive $B \rightarrow J/\psi + X$ Lifetime D0 and CDF results

• D0 (114 pb ⁻¹)

 $\tau = 1.562 \pm 0.013(stat) \pm 0.045(syst)$ ps main *syst* uncertainties:

- correction factor: 1.6 %
- MC bias: 1.9 %
- \rightarrow 82% J/ ψ 's prompt
- CDF (18 pb ⁻¹, 2002)

 $\tau = 1.526 \pm 0.034(stat) \pm 0.035(syst)$ ps main *syst* uncertainties:

correction factor: 1.1 %

resolution function: 1.5 %

bkg parametrization: 1.1 %

 \rightarrow 83% J/ ψ 's prompt ¹⁰

$B^+ \rightarrow J/\psi + K^+$ Lifetime (D0) Data and Fitting technique

1D fit \rightarrow steps:

- Fit λ distribution of the right sideband
 - Prompt & (λ>0) and (λ<0) exponentials
- Fit λ distribution in the left sideband with an extra term for feeddown from multibody B decay channels
- Fit the signal region
 Norm. of feeddown = 0.12 ± 0.01 (MC)

$B^+ \rightarrow J/\psi K^+$; Results

D()

12

Exclusive B $\rightarrow J/\psi X$ Lifetimes; X= K⁺, K^{*}, ϕ (CDF)

Fit Method: Simultaneous fit of M(B) → signal fraction, define sidebands cτ(B) → lifetime

Signal Contribution:

 $F_{sig} = \frac{1}{c\tau} \exp\left(\frac{-t}{c\tau}\right) \otimes G(t, s\sigma_i)$

$\begin{array}{c} B_{s} \rightarrow J/\psi \ \phi \\ \text{with } B_{d} \rightarrow J/\psi \ K^{*} \ \text{as a control channel} \\ \text{CDF} & D0 \end{array}$

- 138 pb⁻¹ of data 2D fit (Mass, $c\tau$) Signal events: 120 ± 13
- $p_T(B) > 6.5 \text{ GeV/c}$
- $p_T(\phi) > 2 \text{ GeV/c}$
- run averaged beam spot: 33μm
 track impact parameter resol: 35μm

- 114 pb⁻¹ of data2D fit (Mass, cτ)
- Signal events: 69 ± 14
- $p_T(B) > 6 \text{ GeV/c}$
- $p_{T}(\phi) > 2 \text{ GeV/c}$
- $p_{T}(K) > 1 \text{ GeV/c}$
- event by event PV
- L_{xy} resolution $\approx 40 \ \mu m$

$B^0_s \rightarrow J/\psi + \phi$; Data (D0) Decay Length resolution

$B^0_d \rightarrow J/\psi + K^*$; Data D0 CDF

$\begin{array}{ccc} B^0_{s} \rightarrow J/\psi + \phi; & Fit results \\ D0 & CDF \end{array}$

 $\tau = 1.19 \pm 0.18(stat) \pm 0.14(syst)$ ps

 $\tau = 1.33 \pm 0.14(stat) \pm 0.02(syst)$ ps

$\begin{array}{ccc} B^0_{\ d} \xrightarrow{} J/\psi + K^*; & Fit results \\ D0 & CDF \end{array}$

 $\tau = 1.51 \pm 0.06(stat) \pm 0.02(syst)$ ps

 $\tau = 1.51 \pm 0.18(stat) \pm 0.20(syst)$ ps

$\Lambda_b \rightarrow J/\psi \Lambda$ Lifetime and Crosscheck (CDF)

20

B_s and Λ_b Lifetimes - Summary

\mathbf{B}_{s} CP =+1 & CP = -1 Lifetimes

• $B_s^0 \rightarrow J/\psi \phi$ unknown mixture of CP =+1 & CP = -1 states

Standard Model predicts $\Delta\Gamma_{\rm S}/\Gamma_{\rm S} \sim 0.1$ $\Gamma_{\rm S} = (\Gamma_{\rm Light} + \Gamma_{\rm Heavy})/2$; $\Delta\Gamma_{\rm S} = \Gamma_{\rm Light} - \Gamma_{\rm Heavy}$ CP=+1 CP=-1

In the case of untagged decay, the CP – specific terms evolve like:

- CP even: $(|A_{\theta}(0)|^2 + |A_{\parallel}(0)|^2) \exp(-\Gamma_{\text{Light}}t)$
- **CP odd:** $|A_{\perp}(0)|^2 \exp(-\Gamma_{\text{Heavy}}t)$
- Flavor specific final states (e.g. $B_s^0 \rightarrow lvD_s$) provide:

 $\Gamma_{\rm fs} = \Gamma_{\rm s} - (\Delta \Gamma_{\rm s})^2 / 2\Gamma_{\rm s} + O((\Delta \Gamma_{\rm s})^3 / \Gamma_{\rm s}^2)$

B_s Lifetimes, *transversity* variable θ_T

The **CP-even** and **CP-odd** components have distinctly different decay distributions.

The distribution in *transversity* variable θ_T and its time evolution is:

 $d\Gamma(t)/d \cos\theta_T \propto (|A_{\theta}(t)|^2 + |A_{\parallel}(t)|^2) (1 + \cos^2\theta_T) + |A_{\perp}(t)|^2 2 \sin^2\theta_T$

3 linear polarization states: J/ψ and φ polarization vectors: longitudinal (0) to the **B** direction of motion; transverse and parallel (||) and ($^{\perp}$) to each other

> • MC distributions for CP = +1 & CP= -1 for accepted events (D0)

 \rightarrow Fit extension from 2-D to 3-D in progress

Semileptonic Lifetimes

- The goal is to extract the B_s and Λ_b lifetimes using lepton + D^0 as a control channel
- reconstruct the D decay near lepton
- B decay not fully reconstructed
 → extract the boost factor from MC:
- extract lifetime from decay length
- **CDF:** lepton + displaced track trigger small statistical uncertainty
- **D0:** single muon trigger (prescaled at high luminosity)

Semileptonic Lifetimes (D0) B \rightarrow D⁰ μ X benchmark analysis

1D Analysis

• Factor $K = p_T(D^0 + \mu)/p_T(B)$

from MC (generator level, confirmed with reco'ed tracks)

• Bkg model:

- Prompt &
- +ve exp,-ve exp &
- additional +ve (left side)
- Resolution: double Gaussian
- Results \rightarrow see next page

Semileptonic Lifetimes

D0 results for the $B \rightarrow D^0 \mu X$ benchmark analysis

 $\tau = 1.46 \pm 0.083$ (*stat*) ps - to be compared with $\tau = 1.60 \pm 0.02$ ps \leftarrow WA for this channel

Summary

• Lifetime measurements for inclusive $B \rightarrow J/\psi X$ decays and for exclusive $B \rightarrow J/\psi X$ channels by both CDF and D0:

	CDF	D0	World average
B ⁺	$1.63 \pm 0.05 \pm 0.04$ ps	$1.65 \pm 0.08 \pm 0.12$ ps	1.671 ± 0.018 ps
B ⁰ _d	$1.51 \pm 0.06 \pm 0.02$ ps	$1.51 \pm 0.18 \pm 0.20 \text{ ps}$	1.542 ± 0.016 ps
B ⁰ _s	$1.33 \pm 0.14 \pm 0.02$ ps	$1.19 \pm 0.18 \pm 0.14$ ps	1.461 ± 0.057 ps
Λ_{b}	$1.25 \pm 0.26 \pm 0.10$ ps	\rightarrow In progress	1.233 ± 0.077 ps

- Measurements of polarization states in \mathbb{B}^0_s decay and of $\Delta \Gamma_s / \Gamma_s \rightarrow$ in progress
- Lepton + displaced vertex trigger has been implemented at CDF for the first time
 - expects high statistical accuracy for B_s^0 and Λ_b lifetime
- Benchmark measurement of $B \rightarrow D^0 \mu X$ (D0)

Backup slides

B_s Lifetime Summary of existing measurements

Flavor-specific final states:
$\Gamma_{\rm fs} = \Gamma_{\rm s} - (\Delta \Gamma_{\rm s})^2 / 2\Gamma_{\rm s} + O\left((\Delta \Gamma_{\rm s})^3 / \Gamma_{\rm s}^2\right)$
$\Gamma_{fs} \approx \Gamma_{s} = (\Gamma_{Light} + \Gamma_{Heavy})/2$ CP=+1 CP=-1
$\Delta \Gamma_{\rm S} = \Gamma_{\rm Light} - \Gamma_{\rm Heavy}$
Unknown mixture of $\Gamma_{\text{Light}}, \Gamma_{\text{Heavy}}$
(predominantly CP = +1)

Value(10 ⁻¹² s)	Experiment (channel)
1.42±0.14±0.03	DLPH (l ⁺)
1.53±0.16±0.07	DLPH (D _s)
1.36±0.09±0.06	$CDF(D_s^{-}l^+)$
1.72±0.20±0.18	OPAL (D _s)
1.50±0.16±0.04	$OPAL (D_s^{-} l^+)$
1.47±0.14±0.08	ALEPH (D _s)
$1.60\pm0.26\pm0.14$	DLPH (D _s)
1.54±0.14±0.04	ALEPH $(D_s^- l^+)$

1.34±0.21±0.05	$CDF - (J/\psi \phi)$
1.33±0.14±0.02	CDF (J/ $\psi \phi$) - prelim
1.19±0.18±0.14	D0 $(J/\psi \phi)$ - prelim

Systematic uncertainties (CDF)

Systematic effect	Uncertainty on $c\tau$ (B ⁺), μ m	Uncertainty on $c\tau (B^0_d)$, μm	Uncertainty on $c\tau$ (B _s), μ m
Alignment	± 5	← same	← same
Resolution function	± 3	← same	← same
Fit Model	negligible	← same	← same
Event Selection	negligible	← same	← same
Fitter Bias	negligible	← same	← same
B ⁺ Pathology	± 9	n/a	n/a
Handling (K π) swap	n/a	negligible	n/a
Total	± 11	± 6	± 6

Systematic uncertainties (D0)

Systematic effect	Uncertainty on $c\tau (B^0_d), \mu m$	Uncertainty on $c\tau$ (B _s), μ m	Method
Alignment	± 5	← same	data
Resolution function	negligible	← same	data
Fit Model (bkg)	± 6	← same	data
Fit Model (signal)	± 5	± 3	data
Event Selection (V mass)	± 7	← same	data
Event Selection (p _T)	± 20	← same	MC
Fitter & Reco Bias	± 56	± 35	MC
Total	± 60	± 42	