

Heavy Flavor Production and Cross Sections at the Tevatron (Run II results only) Beauty 2003 October 14-18, 2003 Pittsburg, USA

Chunhui Chen University of Pennsylvania For CDF and D0 Collaboration

Outline

- Tevatron and CDF/D0 upgrade
- Prompt charm meson production cross section
- Inclusive J/Ψ cross section
- b cross section
- b-jet cross section
- Conclusion

Tevatron Run II

The Tevatron is a proton-antiproton collider with 980 GeV/beam 1.80TeV in Run I

36 bunches p × 36 bunches \overline{p} 6×6 in Run I

396 ns bunch crossing time $3.5\mu s$ in Run I

Tevatron Performance: $L\sim 5.0 \times 10^{31} \text{ cm}^{-2}\text{s}^{-1} 9 \text{ pb}^{-1}/\text{week}$ $L_{int}\sim 300 \text{ pb}^{-1}$ delivered by Tevatron

Goal: *L*~10³² cm⁻²s⁻¹

The upgraded detectors

Forward Mini-drift

chambers

NORTH

Central Scintillator

New silicon detector new drift chamber
Upgraded calorimeter, μ
Upgraded DAQ/trigger, esp. displaced-track trigger
New TOF PID system Shielding

20.20

- •New tracking: silicon and fibers in magnetic field
- •Upgraded muon system
- •Upgraded DAQ/trigger (displaced track soon)

Chunhui Chen, University of Pennsylvania

Forward Scintillator

P. .. P.

SOUTH

18:1

B cross section measured from Run I at Tevatron is consistently higher than NLO QCD

Theoretical development still ongoing. Ex: fragmentation effect

Experimental Approaches:

More cross section measurement -- energy at 1.96TeV

-- lower $p_{\tau}(B)$

Study bb correlation

Measure charm production cross section

CDF Silicon Vertex Trigger (SVT)

Prompt Charm Meson X-Section

Measure prompt charm meson production cross section

Data collected by SVT trigger from 2/2002-3/2002

Large and clean signal Measurement not limited by statistics

$$D^{0} \rightarrow K^{-}\pi^{+}$$

$$D^{*+} \rightarrow D^{0}\pi_{s}^{+} \text{ with } D^{0} \rightarrow K^{-}\pi^{+}$$

$$D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$$

$$D_{s}^{+} \rightarrow \phi \pi^{+} \text{ with } \phi \rightarrow K^{+}K^{-}$$

5.8±0.3pb⁻¹

Separate Prompt/Secondary Charm

Most reconstructed charm mesons are direct

Separate prompt and secondary charm based on their **impact parameter distribution**.

Need to separate direct D and $B \rightarrow D$ decay

- Direct D point back to collision point I.P.=0
- Secondary D not point back to PV
 I.P.≠0

Detector I.P. resolution Measured from data

Direct Charm Meson Fraction: D^0 : $f_D = 86.5 \pm 0.4 \pm 3.5\%$ D^{*+} : $f_D = 88.1 \pm 1.1 \pm 3.9\%$ D^+ : $f_D = 89.1 \pm 0.4 \pm 2.8\%$ D^+_s : $f_D = 77.3 \pm 4.0 \pm 3.4\%$

Prompt Charm Meson X-Sections

Determine trigger and reconstruction efficiency from data and MC Measure charm meson p_T spectrum

Integral cross section: $(|Y| \le 1)$

 $\begin{aligned} \sigma(D^0, p_T \ge 5.5 \text{GeV}, |Y| \le 1) &= 13.3 \pm 0.2 \pm 1.5 \mu b \\ \sigma(D^{*+}, p_T \ge 6 \text{GeV}, |Y| \le 1) = 5.2 \pm 0.1 \pm 0.8 \mu b \\ \sigma(D^+, p_T \ge 6 \text{GeV}, |Y| \le 1) &= 4.3 \pm 0.1 \pm 0.7 \mu b \\ \sigma(D_s^+, p_T \ge 8 \text{GeV}, |Y| \le 1) &= 0.75 \pm 0.05 \pm 0.22 \mu b \end{aligned}$

 $\sigma(B^+, p_T \ge 6 \text{GeV}, |\mathbf{Y}| \le 1) = 3.6 \pm 0.6 \,\mu b \quad \langle \blacksquare \rangle$

Prompt charm cross section result submitted to PRL hep-ex/0307080

Differential Charm Meson X-Section

Calculation from M. Cacciari and P. Nason: Resummed perturbative QCD (FONLL) JHEP 0309,006 (2003)

CTEQ6M PDF

M_c=1.5GeV,

Fragmentation: ALEPH measurement

Renorm. and fact. Scale: $m_T = (m_c^2 + p_T^2)^{1/2}$

Theory uncertainty: scale factor 0.5-2.0

Chunhui Chen, University of Pennsylvania

D*+ also include calculation from B.A. Kniehl (private communication)

Comparison with Theory

Ratio of the measured to the predicted cross section

Not incompatible with uncertainties $p_{\rm T}$ shape consistent for D mesons

Measured cross section higher : similar to B

Inclusive J/Y Cross Section

D0: Larger y acceptance for μ

Chunhui Chen, University of Pennsylvania

g

Inclusive J/Y Cross Section

 $\sigma(p\overline{p} \to J/\Psi X, |y(J/\Psi)| < 0.6) = 4.08 \pm 0.02(stat)_{-0.48}^{+0.60}(syst)\mu b$

The J/Ψ inclusive cross section includes contribution from

- -Direct production of J/Ψ
- •Decays from excited charmonium: $\Psi(2S) \rightarrow J/\Psi \pi^+ \pi^-$,
- •Decays of b-hadrons: B \rightarrow J/ Ψ X,

b hadrons have long lifetime,
J/Ψ decayed from b hadrons
Will be displaced from primary
vertex

A unbinned maximum likelihood fit to the flight path of the J/ Ψ in the r ϕ plane to extract the b fraction

Extract Contribution from b $\rightarrow J/\Psi X$

$$d\sigma(p\overline{p} \to H_b X, H_b \to J/\Psi X) \cdot Br(J/\Psi \to \mu\mu)/dp_T(J/\Psi)$$

 $H_{\rm b}$ denote both b hadron and anti b hadron $|Y(H_{\rm b})|{<}0.6$

But:

We can not extract b fraction when b hadron is at rest We want total b hadron cross section We want b cross section as a function of b hadron transverse momentum

b Hadron Differential X-Section

Bottom decays transfer about 1.7GeV p_T to the J/ Ψ We can probe b near p_T =0 if we can measure b fraction of J/ Ψ with p_T below this value.

b Hadron Differential X-Section

 $d\sigma(p\overline{p} \rightarrow H_{h}X, H_{h} \rightarrow J/\Psi X) \cdot Br(J/\Psi \rightarrow \mu\mu)/dp_{T}(H_{h})$

 $d\sigma(p\overline{p} \to H_b X, |y| \le 0.6) \cdot Br(H_b \to J/\Psi X) \cdot Br(J/\Psi \to \mu\mu)$ = 24.5 ± 0.5(*stat*) ± 4.7(*syst*)nb

 $d\sigma(p\overline{p} \rightarrow \overline{b}X, |y| \le 0.6) = 18.0 \pm 0.4(stat) \pm 3.8(syst)\mu b$

MC extract to high Y region

 $d\sigma(p\overline{p} \rightarrow \overline{b}X, |y| \le 1.0) = 29.4 \pm 0.6(stat) \pm 6.2(syst)\mu b$

b-jet X-Section

 μ + jet sample

Using μ p_T spectrum to fit the b and non b content as a function of jet E_T

DØ Run 2 Preliminary

Conclusion

- Large amount data collected by both CDF and D0 already surpass the run I statistics
- New Charm, Bottom cross section results
- Lots of analysis in progress: J/Ψ, Ψ(2S) cross section and polarization Upsilon cross section and polarization Updated b cross section
- Tevatron will contribute the knowledge of heavy flavor production
- Stay tuned