

Spectroscopy and Rare Decays at CDF

Cheng-Ju S. Lin Fermilab

Beauty 2003 Conference Pittsburgh, PA USA

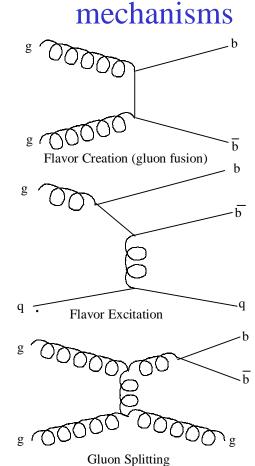
Outline

- Review of B physics at hadron collider
- B hadron spectroscopy

 \rightarrow B⁺, B⁰, B_s, Λ_{b_s} etc...

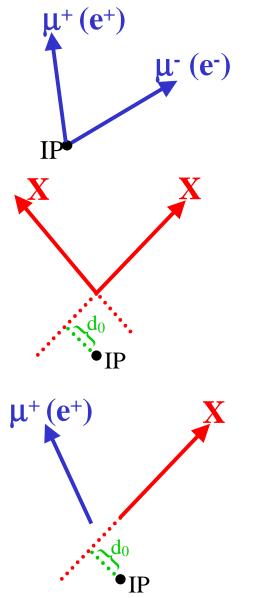
- $D^0 \rightarrow \mu^+ \mu^-$ search
- $B_s \rightarrow \mu^+ \mu^-$ search
- Summary

Related talks at the conference:


- Recent Results from CDF (R. Harr)
- Heavy Flavor Production and Cross Sections (C. Chen)
- B Lifetime Measurements at the Tevatron (D. Zieminska)
- CP Violation Prospects at the Tevatron (P. Maksimovic)
- Future Prospects on B Mixing (T. Miao)

B Physics at the Tevatron

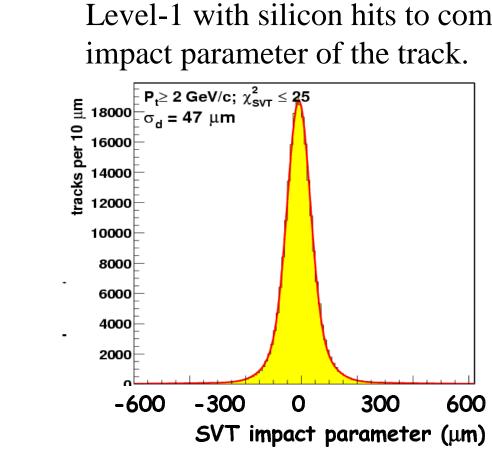
• b production cross-section at the Tevatron is enormous:


 $\sigma(e^+e^-) \rightarrow b\overline{b}$: 1nb at $\Upsilon(4S)$ 7nb at Z⁰ pole $\sigma(p\overline{p}) \rightarrow b\overline{b}$: ~ 50µb at Tevatron

- Wide spectrum of B species are produced: B⁺, B⁰, B_s, B_c, Λ_b, etc...
- However, inelastic cross-section at the Tevatron is x1000 larger ☺
 - → High trigger efficiency and trigger bandwidth are the keys to success in hadron environment

b production

B Triggers at CDF



- (1) Dimuon trigger:
 - For triggering on J/ Ψ and rare B decays Track pT threshold is lowered to 1.5GeV (was 2GeV in RunI)
- (2) Two-track trigger (SVT): For triggering on hadronic B and charm decays. Both tracks are required to have an impact parameter d₀> 120μm. New trigger for RunII!!
- (3) Lepton+Displaced Track(SVT): For triggering on semileptonic B decays. New trigger for RunII!!

Silicon Vertex Tracker (SVT)

CDF is the first hadron collider experiment to be able to trigger on fully hadronic B events

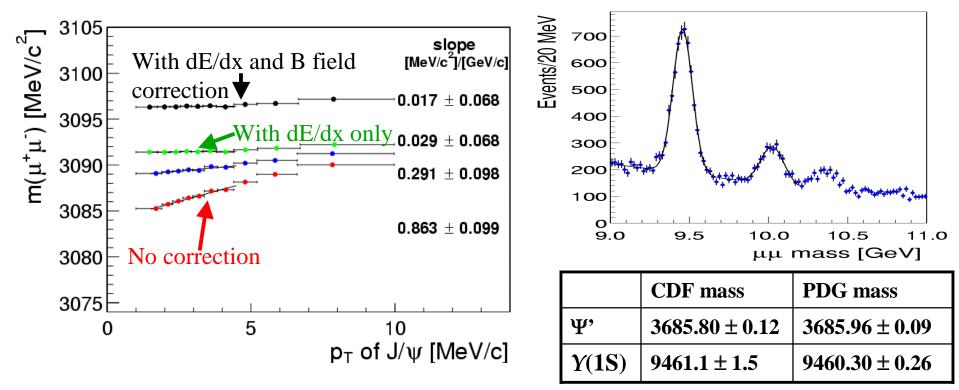
• SVT links drift chamber tracks from Level-1 with silicon hits to compute the impact parameter of the track.

Level-2 SVT Trigger

- SVT d0 resolution is ~ $47\mu m$ (35µm beamline \oplus 33µm resol).
- SVT revolutionized B and Charm physics at CDF.

Spectroscopy: Mass Scale Calibration

Calibration Momentum Scale of Tracks Using J/Ψ Sample:


- dE/dx correction \rightarrow tune GEANT material description to

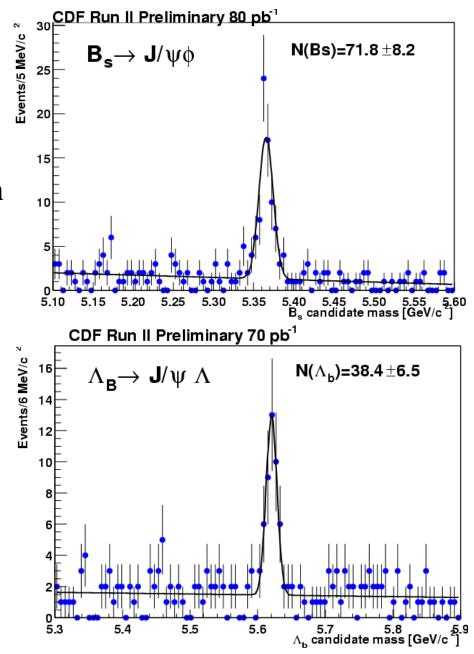
remove pT dependence on the J/Ψ mass,

- B field correction \rightarrow apply magnetic field correction

to shift the raw J/Ψ mass to the PDG value,

- Cross-checks \rightarrow measure meson masses (Ks, D, Y, Ψ ', etc...).

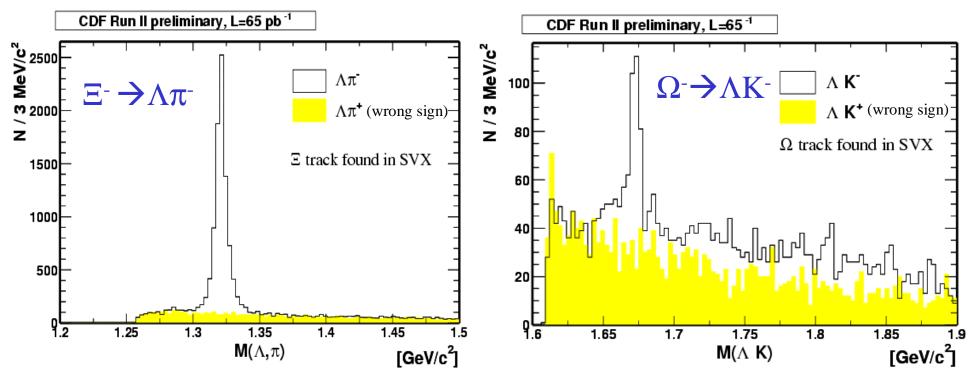
Spectroscopy: B Mass Measurements

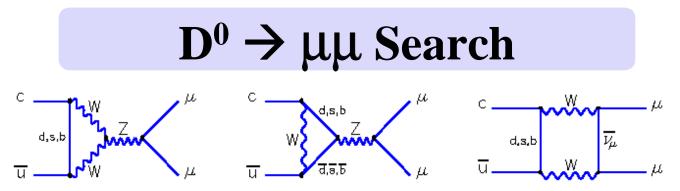

- We have measured B hadron masses using fully reconstructed B→J/Ψ X decay modes
- CDF RunII preliminary results with ~80pb⁻¹:

 $\begin{array}{l} m(B^0) = 5280.30 \pm 0.92 \pm 0.96 \ MeV/c^2 \\ m(B^+) = 5279.32 \pm 0.68 \pm 0.94 \ MeV/c^2 \end{array}$

CDF: $m(B_s) = 5365.5 \pm 1.6 \text{ MeV/c}^2$ PDG: $m(B_s) = 5369.6 \pm 2.4 \text{ MeV/c}^2$

CDF: $m(\Lambda_b) = 5620.4 \pm 2.0 \text{ MeV/c}^2$ PDG: $m(\Lambda_b) = 5624 \pm 9 \text{ MeV/c}^2$

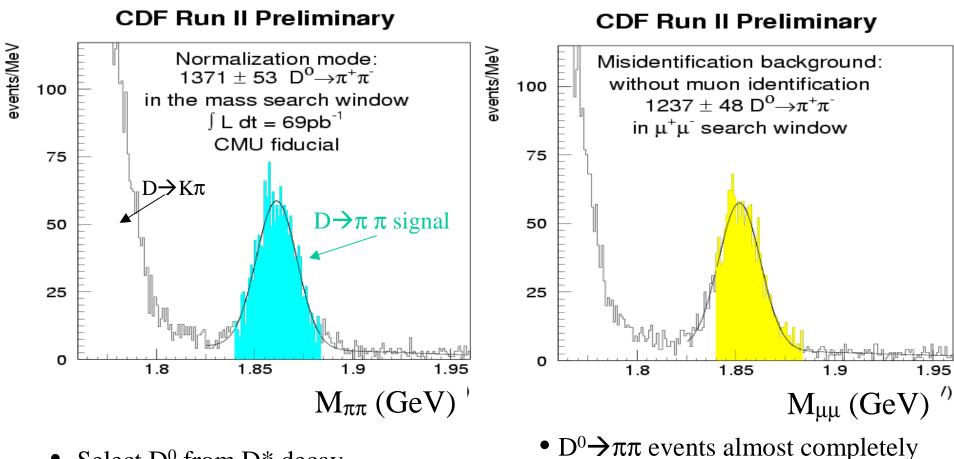

• CDF's B_s and Λ_b mass measurements are world's best!!!



Spectroscopy: CDF Prospects

- Results presented used only a fraction of available data. With more data coming, the uncertainty on the mass measurements will continue to improve.
- Mass of other mesons (e.g. B_c) and baryons will be measured.
- Sneak preview: by tracking long lived charged hyperons through the silicon detector, we have obtained a very clean sample of Ξ^{-} and Ω^{-} .

 \rightarrow Next stop: Ξ_b and Ω_b


- Standard Model expectation on the branching ratio is $\sim 10^{-13}$
- However, new physics (e.g. some R-parity violating SUSY Models) could enhance the branching to ~10⁻⁶ → window of opportunity to observe new physics

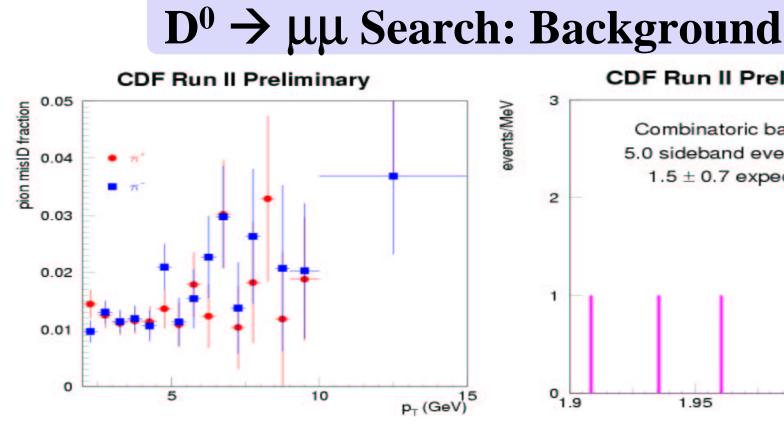
Analysis Approach:

- Use data from the two-track (hadronic) trigger to search for $D^0 \rightarrow \mu\mu$ candidates
- The ideal normalization mode is $D^0 \rightarrow \pi \pi$. Similar decay topology as $D^0 \rightarrow \mu \mu$ and also comes through the same hadronic trigger path \rightarrow trigger efficiency and acceptance cancel in the ratio!!

$$BR_{CL}(D^{0} \to \mu^{+}\mu^{-}) \leq \frac{N_{CL}(D^{0} \to \mu^{+}\mu^{-})}{N(D^{0} \to \pi^{+}\pi^{-})} \cdot \frac{\varepsilon(D^{0} \to \pi\pi)}{\varepsilon(D^{0} \to \mu\mu)} \cdot BR(D^{0} \to \pi^{+}\pi^{-})$$

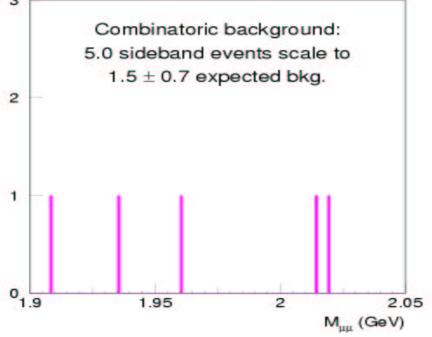
Reconstruction efficiency

$D^0 \rightarrow \mu\mu$ Search: Normalization



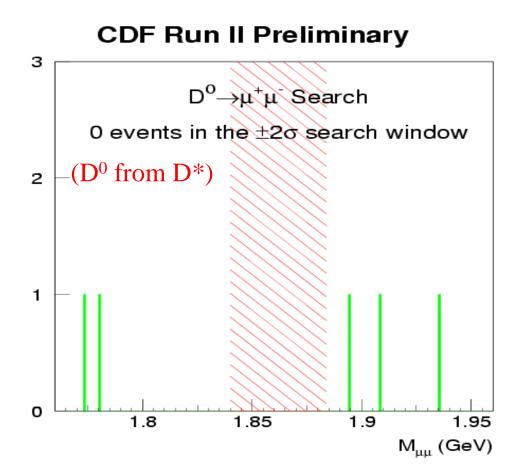
overlaps with the $\mu\mu$ search window

• Need to have good understanding of


 $\pi \rightarrow \mu$ fake rate.

- Select D⁰ from D* decay
- Clean $D^0 \rightarrow \pi \pi$ peak
- 1371 events in muon fiducial region

- Pion fake rate is measured from a sample of tagged D* events
- Fake background is determined from the # of $D^0 \rightarrow \pi\pi$ events reconstructed as $\mu\mu$ events times (pion misID)²
- BKG(fake) = 0.3 ± 0.1 events


CDF Run II Preliminary

- Combinatoric background is determined from the high mass side-band region
- BKG(combinatoric)=1.5±0.7 events

Total expected background in $\mu\mu$ search window = 1.8 ± 0.7 events

$D^0 \rightarrow \mu\mu$ Search: Result

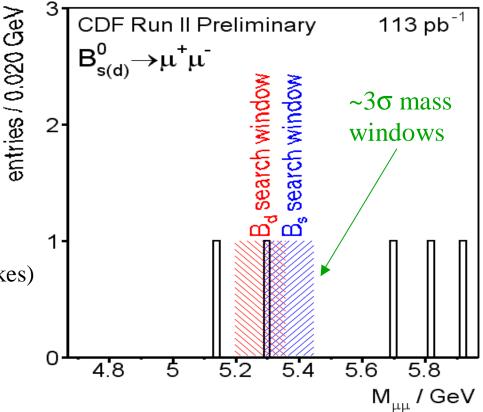
- 0 event in search window while expect 1.7 background events
- The upper limit is: $B(D^0 \rightarrow \mu\mu) < 2.5 \times 10^{-6} (90\% CL)$ $B(D^0 \rightarrow \mu\mu) < 3.3 \times 10^{-6} (95\% CL)$ (accepted by PRD Rapid Comm.)
- The limit is ~ x2 better than the previous published limit
- Future prospect:
 - Include more statistics and extend muon coverage,
 - Other interesting search modes: $D^+ \rightarrow \pi \mu \mu, D^+ \rightarrow K \mu \mu,$ $D^0 \rightarrow \mu e, etc...$

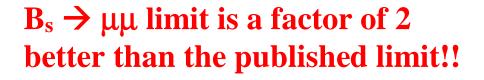
$B_s \rightarrow \mu\mu$ Search

- FCNC is forbidden at the tree-level in the Standard Model. The expected branching ratio for $B_s \rightarrow \mu\mu$ is ~10⁻⁹.
- Many SUSY Models predicts a large enhancement in the branching ratio (~10⁻⁶). The rate is proportional to $tan(\beta)^6$.

If decay is observed soon \rightarrow new physics If decay is not seen \rightarrow put a tight constraint on tan(β) and rule out some SUSY models

THIS IS A WIN-WIN SITUATION

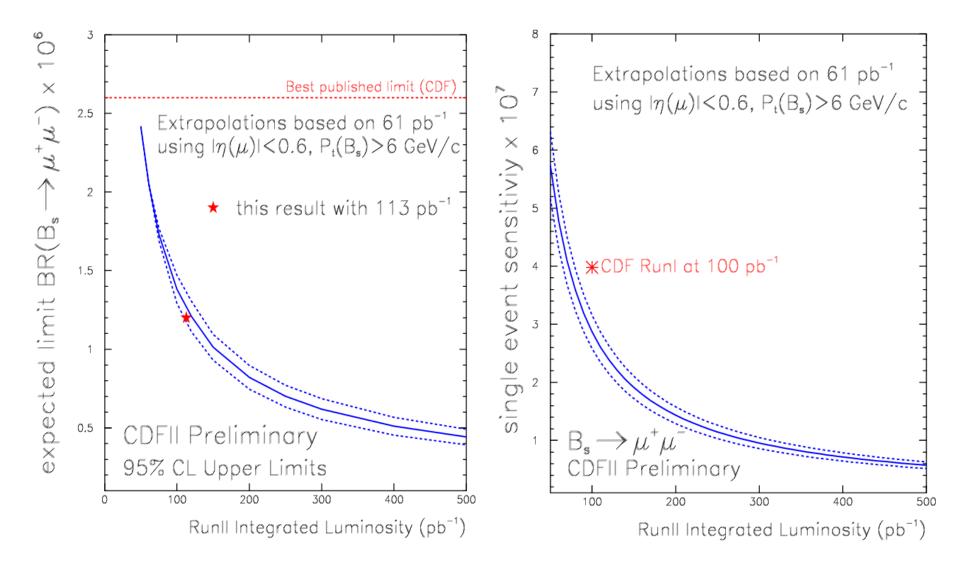

• Theorists are very interested in the experimental progress of this analysis.



$B_s \rightarrow \mu\mu$ Search: Results

- It was a blind analysis
- Figure of merit for optimization: Expected 95% CL upper limit on the branching ratio
- 1 event observed in the search window with an expected background of 0.54 ± 0.2 events
 (background is dominated by non-resonance fakes)
- The limit on the branching ratio: (based on 113pb-1 of data)
 Br(B_s → μμ) < 9.5×10⁻⁷ @ 90% CL Br(B_s → μμ) < 1.2×10⁻⁶ @ 95% CL

 $Br(B_d \rightarrow \mu\mu) < 2.5 \times 10^{-7}$ @ 90% CL $Br(B_d \rightarrow \mu\mu) < 3.1 \times 10^{-7}$ @ 95% CL



$B_s \rightarrow \mu\mu$ Search: Projections

Expected Limit vs. Luminosity

Single Event Sensitivity vs. Luminosity

Summary

- CDF RunII has now accumulated over 200pb⁻¹ of data (a factor of two larger than RunI). The results presented today are based on a fraction of available data. Updates with improved precision are on the way...
- CDF is back in the game of producing world class results. With more data coming, CDF will contribute to the physics community a wide spectrum of precision mass measurements.
- Bc was discovered in RunI via semileptonic channel. Search is on for the mass peak from Bc \rightarrow J/ $\Psi \pi$ in Run II.
- Bs and $D^0 \rightarrow \mu\mu$ (and other rare decays) search will provide a window of opportunity to discover new physics. CDF will continue to be a major player in this arena.