#### **Radiative and Rare B-Decays at BaBar**

# Carsten Hast, SLAC

for the BaBar Collaboration Pittsburgh, October 17

40th Anniversary of Stanford Linear Accelerator Center



All results are preliminary unless journal ref. is given limit values are 90% CL unless otherwise specified



Since this talk is nicely framed between a theoretical introduction and a Belle summary and outlook I will focus on newer results and analysis techniques from BaBar





SVT+DCH:  $\sigma(p_T)/p_T = 0.13 \%$  $p_T + 0.45 \%$ , good dE/dxDIRC:K- $\pi$  separation 4.2  $\sigma$  @ 3.0 GeV/c  $\rightarrow$  2.5  $\sigma$  @ 4.0 GeV/cEMC:Very good electron identification and  $\pi^0$  reconstructionIFR:Decent muon identification

Beauty 2003, October 17th

#### **PEP- II Lumi Performance and Recorded BaBar Lumi**



**Best Peformance** 

PEPII peak Luminosity: 6.582x10<sup>33</sup> cm<sup>-2</sup> sec<sup>-1</sup>

Integrated Luminosity Shift: 135.2 pb<sup>-1</sup> in 24 hours: 391.2 pb<sup>-1</sup>

|         | On(off)-peak            |
|---------|-------------------------|
| Run 1+2 | 82 (10)fb <sup>-1</sup> |
| Run 3   | 31 (4) fb <sup>-1</sup> |
| Run 4   | 6 (0)fb <sup>-1</sup>   |

Beauty 2003, October 17th

**Standard Variables in U(4S) Frame** 

 $e^+e^- \rightarrow Y(4S) \rightarrow BB \implies B$  produced almost at rest in Y(4S) frame For B decay with no missing particles use beam energy to constrain mass and energy of the reconstructed B



# B+→K+IIII Search

A rare flavour changing neutral current (FCNC)  $b \otimes svv$  decay SM prediction: Br (B $\rightarrow$ Kvv)  $\cong$  4×10<sup>-6</sup> Summed over all neutrino species

- The best upper limits (@90% CL):\_
  - − CLEO: Br (B→Kνν) < 2.4×10<sup>-4</sup>
  - BABAR: Br (B $\rightarrow$ Kvv) < 9.4×10<sup>-5</sup> hep-ex/0207069

Semi-Leptonic B-tags:  $B \rightarrow DIvX$  (X =  $\gamma$ ,  $\pi^0$  or nothing) 50.7 fb<sup>-1</sup>

- New search (80 fb<sup>-1</sup>) with hadronic B-tags
  - $\mathsf{B}^{\pm} \rightarrow D^{0}(\overset{*}{})(\pi^{\pm})(\mathsf{K}^{\pm})(\mathsf{K}^{0}{}_{s})(\pi^{0})$  $(D^{*} \rightarrow D^{0}\pi \text{ and } D^{0} \rightarrow \mathsf{K}\pi, \mathsf{K}\pi\pi^{0}, \mathsf{K}3\pi, \mathsf{K}_{s}\pi\pi)$
  - B constraining kinematic variables:  $\Delta_E$  and  $m_{ES}$

Beauty 2003, October 17th

Carsten Hast, SLAC

PRL 86 2950 (2001)

## B+→K+IIII Search II

- Identify tag B in signal  $\Delta E$  and  $m_{ES}$  area
- All remaining tracks and neutrals belong to the recoiling signal-side B
  - One well identified Kaon
  - no  $\pi^0$
  - Missing momentum not in the beam pipe
  - "extra" Energy < 300 MeV





• Expected background events: 2.7±0.8

Br (  $B \rightarrow Kvv$ ) < 1.05 × 10<sup>-4</sup> @ 90% CL

hep-ex/0304020

• Combining this result with the previous, (Br  $(B \rightarrow Kvv) < 9.4 \times 10-5$ ) statistically independent *BABAR* result, yields a new limit:

Br (  $B \rightarrow K_{VV}$  ) < 7.0 × 10<sup>-5</sup> @ 90% CL Going to PRL



The remaining neutrals and tracks are signal candidates

•  $\tau \rightarrow$  (e,  $\mu$ )  $\nu_{(e, \mu)} \nu_{\tau}$ 

• 
$$\tau \rightarrow (e, \mu) \nu_{(e, \mu)} \nu_{\tau}$$
  
•  $\tau \rightarrow (\pi, \pi \pi^0, \pi \pi \pi) \nu_{\tau}$ 

very clean but low efficiency (~ 0.25 - 0.30 %)

The two samples of *tag B* mesons are statistically independent

# t Signal Selection

### Semi-Leptonic B-Tag

- $\tau^+\tau^-$  event veto
- Only one charged track having low impact parameter
- Track is not identified as a kaon
- Track is an identified lepton
- Residual neutral energy is used to model PDFs to extract signal and background contributions



#### Hadronic B-Tag



- 1 track, 0  $\pi^0$
- 1 track, 1  $\pi$  <sup>0</sup>
- 3 tracks, 0  $\pi$  <sup>0</sup>
- Track is not identified as a kaon
- Track is identified as lepton or pion
- Additional cuts on
  - Missing momentum
  - Residual neutral energy
  - Track momentum
  - Invariant masses
- Background mainly from V<sub>cb</sub>
  events
- Signal efficiency: 11.3%

# **B→tn** Results

#### Semi–Leptonic B-Tag



#### Hadronic B-Tag

| Selection                                   | Total Bkg      | Data<br>candidates |
|---------------------------------------------|----------------|--------------------|
| $\tau \rightarrow e \nu_e \nu_\tau$         | 6.7 ±2.0 ±0.6  | 10                 |
| $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ | 5.0 ±1.7 ±0.4  | 8                  |
| $\tau \rightarrow \pi \nu_{\tau}$           | 11.2 ±2.5 ±0.5 | 6                  |
| $\tau \rightarrow \pi \pi^0 \nu_{\tau}$     | 10.4 ±2.6 ±1.2 | 7                  |
| τ $\rightarrow$ πππ ν <sub>τ</sub>          | 4.3 ±1.4 ±0.3  | 4                  |
|                                             |                |                    |
| All                                         | 37.6 ±4.7 ±1.5 | 35                 |

Br (  $B^- \rightarrow \tau^- \nu$  ) < 7.7 × 10<sup>-4</sup> hep-ex/0304030



**B→mm Search** 

Data sample 1999–2002: ~81fb<sup>-1</sup>

Two Body decay  $\rightarrow p(\mu) \sim m_B/2$ 

- One well identified muon
- All the rest is from the companion B
  - do particle identification
  - No additional leptons allowed
- After the companion B was found, p(µ) is re-reconstructed in the signal B rest frame



All other tracks and neutrals make the Companion-B





Beauty 2003, October 17th

Carsten Hast, SLAC



Updated result on 113 fb<sup>-1</sup> accepted by PRL

Reconstruct K<sup>+</sup>, K<sub>s</sub>  $\rightarrow \pi + \pi^{-}$ , K<sup>\*0</sup>  $\rightarrow$  K<sup>+</sup>  $\pi^{-}$ , K<sup>\*+</sup>  $\rightarrow$  K<sub>s</sub>  $\pi^{+}$ 

Lepton identification for  $e^+e^-$  with p(e) > 0.5 GeV/c,  $\mu^+\mu^-$  with p( $\mu$ ) > 1.0 GeV/c  $b \rightarrow K^{(*)} I I$  Peaking Background

## Events with the same final state: $B \rightarrow J/y K^{(*)}, y' K^{(*)}$



Signal is scattered in this above area

500 fb<sup>-1</sup>  $B \rightarrow J/y K(*), y' K(*)$  Monte Carlo little to no contribution outside these veto bands  $b \rightarrow K^{(*)}$  / / Peaking Background II

Background from lepton miss-identification  $B \rightarrow h^+h^- K^{(*)}$ 

 $h^+h^- K^{(*)}$  events in data convolved with rates for h to fake e, m



Included as part of the fit to data

Beauty 2003, October 17th

2-D unbinned maximum LH fit to m<sub>ES</sub> and DE on all 4 decays K<sup>+</sup>ee/**nm**and K<sub>s</sub><sup>0</sup>ee/**nm** 

b→ KII Results



accepted by PRL

Beauty 2003, October 17th

b→ K\* II Results

#### 3-D unbinned maximum LH fit to m<sub>ES</sub>, **DE** and m<sub>Kp</sub>



Beauty 2003, October 17th

b→ K<sup>(\*)</sup> / / Results

# Comparison of $m_{\rm II}$ in data with simulation, normalized to the measured Br



# Semi-Inclusive $B \rightarrow XsII$

Sum of exclusive modes approach:

reconstruct X<sub>s</sub> with 1 K<sup>±</sup> or K<sup>0</sup><sub>s</sub>  $\rightarrow \pi^{+}\pi^{-}$ , # ( $\pi^{\pm} + \pi^{0}$ )  $\leq$  2, #  $\pi^{0} \leq$  1 10 modes, ~50% of BR(B  $\rightarrow$  X<sub>s</sub> I<sup>+</sup>I<sup>-</sup>) (75% if assumed K<sub>S</sub>=K<sub>L</sub>)

Similar analysis as  $b \rightarrow K^{(*)}$  II but with higher combinatoric background







# Semi-Inclusive $B \rightarrow XsII$ Results



$$\begin{array}{l} \mathsf{Br}(\mathsf{B}\to\mathsf{X}_{\mathrm{s}}\;\mathsf{e}^{+}\mathsf{e}^{-}) \;= (6.6\pm1.9\pm{}^{1.9}{}_{1.6})\;10^{-6} \\ \mathsf{Br}(\mathsf{B}\to\mathsf{X}_{\mathrm{s}}\;\mu^{+}\mu^{-}) \;= (5.7\pm2.8\pm{}^{1.7}{}_{1.4})\;10^{-6} \\ \mathsf{Br}(\mathsf{B}\to\mathsf{X}_{\mathrm{s}}\;\mathsf{I}^{+}\mathsf{I}^{-}) \;= (6.3\pm1.6\pm{}^{1.8}{}_{1.5})\;10^{-6} \end{array}$$

Beauty 2003, October 17th

 $B^{0} \rightarrow K_{2}^{*0}(1430) g$  and  $B^{+} \rightarrow K_{2}^{*+}(1430) g$ 



Br  $(B^0 \rightarrow K_2^{*0}(1430) g)$ 

 $Br (B^+ \rightarrow K_2^{*+}(1430)g)$ 

BaBar (12.2 +/- 2.5 +/- 1.1)10<sup>-6</sup> (14.4 +/- 4.0 +/- 1.3)10<sup>-6</sup> Belle (13 +/- 5 +/- 1) 10<sup>-6</sup> Cleo (16.6 +/- 5.9 +/- 1.3) 10<sup>-6</sup>

# Summary (1)

| • | FCNC $h \rightarrow Knn$       | 3 ha ei                  | vents expected 3 seen   |
|---|--------------------------------|--------------------------|-------------------------|
|   |                                | U NG CI                  |                         |
| • | Purely Leptonic Decays         |                          |                         |
|   | $b \rightarrow tn$             |                          | difficult               |
|   | $b \rightarrow m$              |                          | looks quite interesting |
| • | Radiative Decays               |                          |                         |
|   | $B^0 \to K_2^{*0}(1430) g$ and | $B \to K_2^{*+}(1430) g$ | BaBar is in the game    |

 $B \rightarrow sII$  Summary



 $Br(b \rightarrow s II)$  in good agreement within experiments and prediction

Next step: measure angular and kinematic distributions

...and have fun with the next talk covering all the other interesting rare results measured by Belle