

B. Cox

verbtev
University of Virginia
October 18, 2003

The Physics Reach of BTeV

BTeV was recently described by unanimous decision of the P5 committee as

"potentially the best quark flavor physics experiment into the next decade"

The P5 recommendation:

"P5 supports the construction of BTeV as an important project in the world-wide flavor physics area. Subject to constraints within the HEP budget, we strongly recommend an earlier BTeV construction profile and enhanced C0 optics"
B. Cox

The BTeV Collaboration (32 universities)

 FNAL Fixed Target

Cleo

Hera/Hera-B

Other
Belarussian State
UC Davis
Univ. Of Colorado
Fermilab
Univ. Of Florida
Univ. of Houston
Illinois Inst. of Tech.
Univ. of Illinois
Univ. of Insurbia in Como
INFN - Frascati
INFN - Milano
INFN - Pavia
INFN - Torino
IHEP - Protvino
Univ. of Iowa
Univ. of Minnesota
B. Cox
B.

Nanjing Univ.
Northwestern Univ.
Ohio State Univ.
Univ. of Pennsylvania
Univ. of Puerto Rico
Univ. of Sci. and Tech of China
Shandong Univ.
Southern Methodist Univ.
Suny Albany
Syracuse Univ.
Univ. of Tennessee
Vanderbilt Univ.
Univ. of Virginia
Wayne State Univ.
Univ. of Wisconsin
York Univ.

Objectives of BTeV

Comprehensive study of band c quark production, mixing, decays

- new physics in measurements of CP phases in b and c quark decays
- new physics in detection of rare band c decays
- precision measurement of CKM matrix elements
- b and c quark production
- structure of b baryonic states
- $\boldsymbol{B}_{\text {s decays }}$
B. Cox

vetbtev

The Single Arm BTeV Spectrometer

BTeV Detector Layout

October 18, 2003
B. Cox

Factor of two from enhanced C0 optics. Recommended by P5 for initial operation.

Natural upgrade for additional factor of two by additional of second arm, if indicated by physics results

vetbtev

\bar{b} b production peaks

 along both beam directions

B. Cox

B Physics at

Hadron Colliders

- The Opportunity
- The Tevatron, at 10^{32}, produces $10^{11} \mathrm{~b}$-pairs/year
- It is a "High Luminosity B Factory" due to the broadband vertex trigger, giving access to B_{d}, B_{u}, B_{s}, bbaryon, and B_{c} states.
- Because you are colliding gluons, it is intrinsically asymmetric so time evolution studies are possible (and integrated asymmetries are nonzero)
- The Challenge
- The b events are accompanied by a very high rate of background events
- The b's are produced over a very large range of momentum and angles
- Even in the b events of interest, there is a complicated underlying event so one does not have the stringent constraints that one has in an $\mathrm{e}^{+} \mathrm{e}^{-}$machine

Anticipated Properties of the Tevatron

Luminosity
b cross-section
\# of b-pairs per 10^{7} sec
b fraction.
c cross-section
Bunch Spacing
Luminous region length
Luminous region width Interactions/crossing
2×10^{32}
$>100 \mu \mathrm{~b}$
2×10^{11}
2×10^{-3}
$>500 \mu \mathrm{~b}$
396 ns
$\sigma_{\mathrm{z}}=30 \mathrm{~cm}, \sigma_{\mathrm{x}} \sim \sigma_{\mathrm{y}} \sim 50 \mu \mathrm{~m}$
<2.0>

Operation at 396 ns
Bunch Crossing

- BTeV was designed for $\mathrm{L}=2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ at 132 ns or $\langle 2\rangle \mathrm{int} /$ crossing
- Now expect $\mathrm{L} \sim 2.0 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ at 396 ns , i.e. $\langle 6\rangle$ int/crossing or $\mathrm{L} \sim 1.3 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ at 396 ns , i.e. $\langle 4\rangle \mathrm{int} /$ crossing
- Verified performance by repeating many of the simulations at $\langle 4\rangle$ and $\langle 6\rangle$ int/crossing (without re-optimizing the code) Average impact across store is $\sim 10 \%$
- Key potential problems areas - trigger, EMCAL and RICH all hold up well based on simulations
- Ongoing work to understand fully the impact of a change to 396 ns bunch spacing.

Trigger Performance

- For a requirement of at least 2 tracks detached by more than 60 , only 1% of the beam crossings have interactions that satisfy the BTeV trigger.
- The BTeV trigger has the following efficiencies for these states:

State	efficiency $(\%)$	state	efficiency(\%)
$\mathrm{B} \rightarrow \pi^{+} \pi^{-}$	63	$\mathrm{~B}^{\circ} \rightarrow \mathrm{K}^{+} \pi^{-}$	63
$\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}$	74	$\mathrm{~B}^{\mathrm{o}} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$	50
$\mathrm{~B}^{-} \rightarrow \mathrm{D}^{\circ} \mathrm{K}^{-}$	70	$\mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \mathrm{K}^{*}$	68
$\mathrm{~B}^{-} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{-}$	27	$\mathrm{~B}^{\circ} \rightarrow \mathrm{K}^{*} \gamma$	40

At $<2>$ interactions per crossing

Flavor Tagging in BTeV

¥ $\quad \varepsilon \equiv$ efficiency

- $\mathrm{D} \equiv$ Dilution or $\left(\mathrm{N}_{\text {right }}-\mathrm{N}_{\text {wrong }}\right) /\left(\mathrm{N}_{\text {right }}+\mathrm{N}_{\text {wrong }}\right)$
- Effective tagging efficiency $\equiv \varepsilon \mathrm{D}^{2}$
- Extensive study for BTeV uses
- Opposite sign $\mathrm{K}^{ \pm}$
- Jet Charge
- Same side $\pi^{ \pm}$(for B°) or $\mathrm{K}^{ \pm}$for $\left(\mathrm{B}_{\mathrm{s}}\right)$
- Leptons
- Conclusion:
$\varepsilon D^{2}\left(B^{0}\right)=0.10 \quad \varepsilon D^{2}\left(B_{s}\right)=\mathbf{0 . 1 3}$,
(difference due to same side tagging)
B. Cox
verbtev

Yield Calculation $\boldsymbol{B}^{o} \rightarrow \pi^{+} \pi^{-}$

Cross-section	$100 \mu \mathrm{~b}$
Luminosity (<2> interactions/crossing)	2×10^{32}
\# of $\mathrm{B}^{\mathbf{0}} / \mathrm{Year}\left(10^{7} \mathrm{~s}\right)$	1.5×10^{11}
$\mathbf{B}\left(\mathbf{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)$	0.45×10^{-5}
Reconstruction efficiency - one arm	0.04
Particle I.D. efficiency	0.82
Triggering efficiency (after all other cuts) L1 +L 2	0.55
\# ($\left.\pi^{+} \pi^{-}\right)$	12.200
εD^{2} for flavor tags ($\mathrm{K}^{\ddagger}, 1^{\ddagger}$, same + opposite side jet tags)	0.1
\# of tagged $\pi^{+} \pi^{-}$	1,220
Signal/Background	3
Error in $\pi^{+} \pi^{-}$asymmetry (including bkgrd)	± 0.033

B. Cox

verbtev

CKM Matrix

Wolfenstein

Parametrization

$V_{c r}$	\mathbf{d}	s	\mathbf{b}
	\mathbf{u}	$1-\frac{1}{2} \lambda^{2}$	λ
\mathbf{c}	$-\lambda$	$1-\frac{1}{2} \lambda^{2}-i \eta A^{2} \lambda^{4}$	$A \lambda^{2}\left(\rho-i \eta\left[1-i \eta \lambda^{2}\right)\right.$
\mathbf{t}	$A \lambda^{3}(1-\rho-i \eta)$	$-A \lambda^{2}$	1

- Good to λ^{3} in real part $\& \lambda^{5}$ in imaginary part
- We know $\lambda=0.22$, A~0.8; constraints on $\rho \& \eta$

verbtev

Determination of the of the bd Triangle

- Using different measurements to define apex of triangle
- Also have ε_{K} ($\left(\right.$ P in K_{L} system)

B. Cox

The CKM Phases

 (Angles)$$
\begin{array}{ll}
\beta=\arg \left(-\frac{\mathrm{V}_{\mathrm{t}} \mathrm{~V}_{\mathrm{td}}^{*}}{\mathrm{~V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{cd}}^{*}}\right) & \gamma=\arg \left(-\frac{\mathrm{V}_{\mathrm{ub}}^{*} \mathrm{~V}_{\mathrm{ud}}}{\mathrm{~V}_{\mathrm{cb}}^{*} \mathrm{~V}_{\mathrm{cd}}}\right) \\
\chi=\arg \left(-\frac{\mathrm{V}_{\mathrm{cs}}^{*} \mathrm{~V}_{\mathrm{cb}}}{\mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{tb}}}\right) & \chi^{\prime}=\arg \left(-\frac{\mathrm{V}_{\mathrm{ud}}^{*} \mathrm{~V}_{\mathrm{us}}}{\mathrm{~V}_{\mathrm{cd}}^{*} \mathrm{~V}_{\mathrm{cs}}}\right)
\end{array}
$$

$\alpha=\pi-(\beta+\gamma), \beta \& \gamma$ probably large, χ small $\sim 0.03 \chi^{\prime}$ smaller

verbtev

Current Status of

Knowledge of ρ, η

- Constraints on $\rho \& \eta$ from Hocker et al.
- Theory parameters are allowed to have equal probability within a restricted but arbitrary range

- Large model dependence for $V_{u b} / V_{c b}, \varepsilon_{K}$ and Δm_{d},
- Smaller but significant model dependence for Δm_{s}.
- Virtually no model dependence for $\sin (2 \beta)$

Primary Modes

- $\mathbf{B}^{0} \rightarrow \mathbf{J} / \Psi \mathrm{K}_{\mathrm{s}}$
- $\mathbf{B}^{0} \rightarrow \rho \pi \rightarrow \pi^{+} \pi \pi^{0}$
- $\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{D}^{ \pm} \mathbf{K}^{\boldsymbol{+}}$
- $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\mathrm{s}}^{0} \mathrm{~K}^{-}$(and c.c.)
- $\mathbf{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \Psi \eta^{\prime}$
$\sin (2 \beta)$
$\sin (2 \alpha)$
$\sin (\gamma)$
$\sin (\gamma)$
$\sin (2 \chi)$

BTeV Capabilities

High rate capability Excellent particle ID
 Broad band trigger High speed/ capacity DA

Pixel Detectors

Physics Quantity	Decay Mode	Vertex Trigger	$\begin{aligned} & \mathrm{K} / \pi \\ & \text { sep } \end{aligned}$	$\boldsymbol{\gamma d e t}$	Decay time σ
$\sin (2 \alpha)$	$\mathbf{B}^{0} \rightarrow \rho \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}$	¥	¥	¥	
$\sin (2 \alpha)$	$\mathbf{B}^{\mathbf{0}} \rightarrow \boldsymbol{\pi}^{+} \pi^{-}$\& $\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}$	\geq	\geq		\geq
$\cos (2 \alpha)$	$\mathrm{B}^{\mathbf{0}} \rightarrow \mathrm{\rho} \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}$	¥	¥	¥	
$\operatorname{sign}(\sin (2 \alpha))$	$\mathbf{B}^{\mathbf{0}} \rightarrow \mathrm{\rho} \pi$ \& $\mathbf{B}^{\mathbf{0}} \rightarrow \pi^{+} \pi^{-}$	¥	¥	¥	
$\sin (\gamma)$	$\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{D}_{\mathrm{s}} \mathrm{K}^{-}$	¥	\pm		\geq
$\boldsymbol{\operatorname { s i n }}(\gamma)$	$\mathbf{B}^{\mathbf{o}} \rightarrow \mathrm{D}^{\mathbf{0}} \mathrm{K}^{-}$	¥	¥		
$\sin (\gamma)$	$\mathrm{B} \rightarrow \mathrm{K} \pi$	¥	¥	¥	
$\sin (2 \chi)$	$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \eta^{\prime}, \mathrm{J} / \psi \eta$		$¥$	¥	¥
$\sin (2 \beta)$	$\mathrm{B}^{\mathbf{0}} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\text {s }}$				
$\cos (2 \beta)$	$\mathbf{B}^{\mathbf{0}} \rightarrow \mathrm{J} / \Psi \mathrm{K}^{*} \& \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi$		¥		
$\mathrm{x}_{\text {s }}$	$\mathrm{B}_{s} \rightarrow \mathrm{D}_{5} \pi^{-}$	¥	¥		¥
$\Delta \Gamma$ for B_{s}	$\mathbf{B}_{s} \rightarrow \mathbf{J} / \psi \eta^{\prime}, \mathbf{K}^{+} \mathbf{K}^{-}, \mathbf{D}_{s} \pi^{-}$	¥	\geq	¥	¥

verbtev

Measuring $\boldsymbol{\alpha}$

Using $\boldsymbol{B}^{\boldsymbol{o}} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

- Using $B^{0} \rightarrow \pi^{+} \pi$ has the problem of a large Penguin term (CLEO+BABAR+BELLE):

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~B}^{0} \rightarrow \pi^{+} \pi^{-}\right)=(4.5 \pm 0.9) \times 10^{-6} \\
& \mathrm{~B}\left(\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{ \pm} \pi^{\mathrm{m}}\right)=(17.3 \pm 1.5) \times 10^{-6}
\end{aligned}
$$

- The effect of the Penguin must be measured in order to determine α. Can be done using Isospin, but requires a rate measurements of $\pi \pi^{\circ}$ and $\pi^{0} \pi^{0}$ (Gronau \& London). However, this is complicated.

B. Cox

verbtev

Measuring α

Using $B^{o} \rightarrow \rho \pi \rightarrow \pi^{+} \pi \pi^{0}$

- A Dalitz Plot analysis gives both $\sin (2 \alpha)$ and $\cos (2 \alpha)$
(Snyder \& Quinn)
- Measured branching ratios are:
$B\left(B^{-} \rightarrow \rho^{\circ} \pi^{-}\right)=\sim 10^{-5}$
$B\left(B^{0} \rightarrow \rho^{-} \pi^{+}+\rho^{+} \pi^{-}\right)=\sim 3 \times 10^{-5}$
$B\left(B^{0} \rightarrow \rho^{0} \pi^{0}\right)<0.5 \times 10^{-5}$
- BTeV simulations indicate that 1000-tagged events are sufficient to determine α with an error $\delta \alpha \sim 4^{0}$.

B. Cox

Detecting $B^{o} \rightarrow \rho \pi$

Based 9.9x10 ${ }^{6}$ background events

$$
\begin{aligned}
& \mathrm{B}^{0} \rightarrow \mathrm{\rho}^{+} \pi-\mathrm{S} / \mathrm{B}=4.1 \\
& \mathrm{~B}^{0} \rightarrow \mathrm{\rho}^{\circ} \pi^{0} \\
& \mathrm{~S} / \mathrm{B}=0.3
\end{aligned}
$$

B. Cox

20

verbtev

Measuring γ
using $\boldsymbol{B}_{s} \rightarrow \boldsymbol{D}_{s} \boldsymbol{K}^{\boldsymbol{m}} \quad$ Model Independent

Time dependent flavor tagged analysis of $\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{D}_{\mathrm{s}} \mathbf{K}^{ \pm}$
Diagrams for the two decay modes, $B R \sim 10^{-4}$ for each

Measuring γ using

verbtev

$\boldsymbol{B}^{-} \rightarrow \boldsymbol{D}^{0} \mathbf{K}^{-} \rightarrow\left[K^{+} \pi\right] \boldsymbol{K}^{-}$
$\boldsymbol{B}^{-} \rightarrow \boldsymbol{D}^{0} \mathbf{K}^{-} \rightarrow\left[{K^{+}}^{+}\right] K^{-}$
Model independent
Decay processes

Rate difference between $\mathbf{B}^{-} \rightarrow \mathbf{D}^{0} \mathbf{K}^{-} \boldsymbol{\&} \mathbf{B}^{+} \rightarrow \mathbf{D}^{0} \mathbf{K}^{+}$

$$
B \sim 1 \times 10^{-7}
$$

$\mathrm{B} \sim \mathbf{0 . 7 \times 1 0}{ }^{-7}$
B. Cox

Other ways of

Measuring γ

- There are two more ways of determining γ
- Rate measurements in $\mathrm{K}^{\circ} \pi^{ \pm}$and $\mathrm{K}^{ \pm} \pi^{\mathrm{m}}$ (Fleisher-Mannel) or rates in $K^{\circ} \pi^{ \pm}$\& asymmetry in $K^{ \pm} \pi^{0}$ (Neubert-Rosner, Beneke et al). Has theoretical uncertainties.
- Use U spin symmetry $\mathrm{d} \Leftrightarrow \mathrm{s}$: measure time dependent asymmetries in both $\mathrm{B}^{0} \rightarrow \pi^{+} \pi^{-} \& \mathrm{~B}_{\mathrm{s}} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$(Fleischer).
- Ambiguities here as well but they are different in each method, and using several methods can resolve them.
verbtev

x_{s} Reach

- BTeV reaches sensitivity to x_{s} of $\mathbf{8 0}$ in 3.2 years

Using
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \pi$

October 18, 2003

B. Cox

Measuring χ

- BTeV can use CP eigenstates in B_{s} decay to measure χ, for example
$\left.-\quad B_{s} \rightarrow \mathrm{~J} / \psi \eta^{(}\right), \eta \rightarrow \gamma \gamma, \eta^{\prime} \rightarrow \rho \gamma$
- Can also use $J / \psi \phi$, but need
- a complicated angular analysis

Note: Silva \& Wolfenstein (hep-ph/9610208), (Aleksan, Kayser \& London), propose a test of the SM, that can reveal new physics; it relies on measuring the angle χ.
The critical check is $\quad \sin \chi=\lambda^{2}\left(\frac{\sin \beta \sin \gamma}{\sin (\beta+\gamma)}\right)$
Very sensitive since $\boldsymbol{\lambda}=\mathbf{0 . 2 2 0 5} \pm \mathbf{0 . 0 0 1 8}$; Since $\boldsymbol{\chi} \sim \mathbf{0 . 0 3}$, lots of data needed

Current Constraints on New Physics

- All our current measurements are a combination of SM and New Physics-any proposed Models must satisfy current constraints
- SM tree level diagrams are probably large; consider them a background to New Physics.
- Loop diagrams \& CP violation are the best places to see New Physics.
- The most important constraints are
- neutron electric dipole moment $<6.3 \times 10^{-26} e \mathrm{~cm}$
$-\mathrm{B}(\mathrm{b} \rightarrow \mathrm{s} \gamma)=(2.88 \pm 0.39) \times 10^{-4}$
- CP violation in K_{L} decay, $\varepsilon_{\mathrm{K}}=(2.271 \pm 0.017) \times 10^{-3}$
- B^{o} mixing parameter $\Delta \mathrm{m}_{\mathrm{d}}=(0.487 \pm 0.014) \mathrm{ps}^{-1}$

verbtev
New Physics in
Rare b Decays
- New fermion like objects in addition to t , c or u

- Exclusive Rare Decays such as $B \rightarrow \rho \gamma \quad$ Dalitz plot \& polarization
- Inclusive Rare Decays such as inclusive $\mathrm{b} \rightarrow \mathrm{s} \gamma, \mathrm{b} \rightarrow \mathrm{d} \gamma$, $\mathrm{b} \rightarrow \mathrm{sl}^{+} \mathbf{l}^{-}$

New Physics in $\boldsymbol{B} \rightarrow K 1^{+}{ }^{-}$and
 B $\rightarrow K^{*} 1^{+} 1^{-}$

- Example of non-specific models of specific decays,
- effects on dilepton invariant mass \& Dalitz plot for $B \rightarrow K 1^{+} 1^{-} \& B \rightarrow K^{*} 1^{+} 1^{-}$decays.
- "Especially the decay into K^{*} yields a wealth of new information on the form of the new interactions since the Dalitz plot is sensitive to subtle interference effects"
(Greub, Ioannissian \& Wyler hep-ph/9408382)
verbtev

SUSY Test in

$B \rightarrow K^{*} \mathbf{I}^{+}$士 polarization

TYPICAL BTEV ERROR BAR 10^{7} s

B. Cox

MSSM Measurements from Hinchcliff \& Kersting

vebtev
(hep-ph/0003090)

- Contributions to \boldsymbol{B}_{s} mixing

$$
B_{s} \rightarrow \mathrm{~J} / \psi \eta
$$

CP asymmetry $\approx 0.1 \sin \phi_{\mu} \cos \phi_{A} \sin \left(\Delta m_{s} t\right), \sim 10 \times S M$

- Contributions to direct CP violating decay

$$
\text { asymmetry }=\left(\mathrm{M}_{\mathrm{W}} / \mathrm{m}_{\text {squark }}\right)^{2} \sin \left(\phi_{\mu}\right), \sim 0 \text { in } \mathrm{SM}
$$

B. Cox
verbtev

Other Tests for New Physics

- New Physics in B^{0} mixing, $\theta_{\mathrm{D}}, \mathrm{B}^{0}$ decay, $\theta_{\mathrm{A}}, \mathrm{D}^{0}$ mixing, $\phi_{\mathrm{K} \pi}$
- Example: In Supersymmetry there are 80 constants \& 43 phases, while in MSSM: 2 phases (Nir, hep-ph/9911321)

Process	Quantity	SM	New Physics	$W_{\Rightarrow N P}^{\text {Difference }}$
$\mathrm{B}^{\mathrm{o}} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$	CP asym	$\sin (2 \beta)$	$\sin 2\left(\beta+\theta_{\mathrm{D}}\right)$	
$\mathrm{B}^{\circ} \rightarrow \phi \mathrm{K}_{\text {s }}$	CP asym	$\sin (2 \beta)$	$\sin 2\left(\beta+\theta_{D}+\theta_{A}\right)$	
$\mathrm{D}^{\circ} \rightarrow \mathrm{K}^{-} \pi^{+}$	CP asym	0	$\sim \sin \left(\phi_{\mathrm{K} \pi}\right)$	

SUSY Predictions (Nir)

Model	neutron dipole $/ 10^{-25}$	θ_{D}	θ_{A}	$\operatorname{asy}_{\mathrm{D} \rightarrow \mathrm{K} \pi}$
SM	$\leq 10^{-6}$	0	0	0
Approx. Universality	$\geq 10^{-2}$	$\mathrm{O}(0.2)$	$\mathrm{O}(1)$	0
Alignment	$\geq 10^{-3}$	$\mathrm{O}(0.2)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Heavy squarks	$\sim 10^{-1}$	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}\left(10^{-2}\right)$
Approx.CP	$\sim 10^{1}$	$-\beta$	0	$\mathrm{O}\left(10^{-3}\right)$

- \quad Specific pattern in each model \Rightarrow ways of distinguishing among models

October 18, 2003
B. Cox

One Extra Dimension

- Extra spatial dimension is compactified at a scale $1 / \mathrm{R}>250 \mathrm{GeV}$
- Contributions from Kaluza-Klein modes- Buras, Sprnger \& Weiler (hepph/0212143) using model of Appelquist, Cheng and Dobrescu (ACD)
- No effect on $\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|, \Delta \mathrm{M}_{\mathrm{d}} / \Delta \mathrm{M}_{\mathrm{s}}, \sin (2 \beta)$
- However, has effects on $\mathrm{V}_{\mathrm{td}}, \gamma, \mathrm{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$

One Extra Dimension Effects

- Precision measurements needed for large $1 / \mathrm{R}$
B. Cox

Other Extra Dimensions
 Speculations

- Chakraverty, Huitu \& Kundu, 'Effects of Universal Extra Dimensions on B ${ }^{0}$ Mixing (hepph/0212047)
- Kubo \& Terao, "Suppressing FCNC and CP-Violating Phases with Extra Dimensions" (hepph/0211180)
- Huber, "Flavor Physics and Warped Extra Dimensions" (hep-ph/0211056)
- Barenboim, Botella, \& Vives, "Constraining models with vector-like fermions from FCNC in K and B physics" $\left\{\mathrm{CPV}\right.$ in $\left.\mathrm{J} / \Psi \mathrm{K}_{\mathrm{s}} \& B\left(\mathrm{~b} \rightarrow \mathrm{~s}^{+} \mathrm{l}^{-}\right)\right\}($hep-ph/0105306)
- Aranda \& Lorenzo Diaz-Cruz, "Flavor Symmetries in Extra Dimensions" (hep-ph/0207059)
- Chang, Keung \& Mohapatra, "Models for Geometric CP Violation with Extra Dimensions" (hep-ph/0105177)
- Agashe, Deshpande \& Wu, "Universal Extra Dimensions \& b \rightarrow s γ " (hep-ph/0105084)
- Branco, Gouvea \& Rebelo, "Split Fermions in Extra Dimensions \& CPV" (hep-ph/0012289)
- Papavassiliou \& Santamaria, "Extra Dimensions at the one loop level: $\mathbf{Z} \rightarrow \mathbf{b b}$ and B-B mixing" (hep-ph/0008151)

verbtev

Relevance of B Physics

 for New Physics Searches- $\quad \mathrm{BTeV}$ is sensitive using b and c decays in loop diagrams to mass scales \sim few TeV depending on couplings (model dependent). The New Physics effects in these loops may be the only way to distinguish among models.
- Masiero \& Vives: "the relevance of SUSY searches in rare processes is not confined to the usually quoted possibility that indirect searches can arrive 'first' in signaling the presence of SUSY. Even after the possible direct observation of SUSY particles, the importance of FCNC \& CPV in testing SUSY remains of utmost relevance. They are \& will be complementary to the Tevatron \& LHC establishing low energy supersymmetry as the response to the electroweak breaking puzzle" (hep-ph/0104027)

verbtev

BTeV Physics Reach

 in $10^{7} \mathrm{~s}$MODEL DEPENDENT

MODEL INDENPENDENT

Reaction	BR ($\times 10^{-6}$)	\# of Events	S/B	Parameter	Error or (Value)
$\begin{aligned} & \mathbf{B}^{0} \rightarrow \pi^{+} \pi^{-} \\ & \mathbf{B}^{0} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 17 \end{aligned}$	$\begin{aligned} & 14,600 \\ & 18,900 \end{aligned}$	$\begin{array}{r} 3 \\ 6.6 \\ \hline \end{array}$	Asymmetry Asymmetry	$\begin{gathered} 0.030 \\ \mathbf{0 . 0 2 0} \end{gathered}$
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{K}^{-}$	300	7500	7	$\gamma-2 \chi$	8°
$\begin{aligned} & \mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{S}} \mathrm{~J} / \psi \rightarrow \mathrm{I}^{+} \mathrm{I}^{-} \\ & \mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{0}, \mathrm{~K}^{0} \rightarrow \pi \mathrm{IV} \end{aligned}$	$\begin{gathered} 445 \\ 7 \end{gathered}$	$\begin{gathered} 168,000 \\ 250 \end{gathered}$	$\begin{array}{r} 10 \\ 2.3 \end{array}$	$\begin{aligned} & \sin (2 \beta) \\ & \cos (2 \beta) \end{aligned}$	$\begin{aligned} & 0.017 \\ & \sim 0.5 \end{aligned}$
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{D}_{\mathrm{s}} \pi$	3000	59,000	3	$\mathrm{x}_{\text {s }}$	(75)
$\begin{aligned} & \mathbf{B}^{-} \rightarrow \mathbf{D}^{0}\left(\mathbf{K}^{+} \pi^{-}\right) \mathbf{K}^{-} \\ & \mathbf{B}^{-} \rightarrow \mathbf{D}^{\mathbf{0}}\left(\mathbf{K}^{+} \mathbf{K}^{-}\right) \mathbf{K}^{-} \end{aligned}$	$\begin{gathered} 0.17 \\ 1.1 \end{gathered}$	$\begin{gathered} 170 \\ 1,000 \end{gathered}$	$\begin{array}{r} 1 \\ >10 \end{array}$	γ	13°
$\begin{aligned} & \mathrm{B}^{-} \rightarrow \mathbf{K}_{\mathrm{S}} \pi^{-} \\ & \mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \end{aligned}$	$\begin{aligned} & 12.1 \\ & 18.8 \end{aligned}$	$\begin{aligned} & \hline 4,600 \\ & 62,100 \end{aligned}$	$\begin{array}{r} 1 \\ 20 \end{array}$	γ	$<4^{0}+$ theory errors
$\begin{aligned} & \mathrm{B}^{\mathrm{o} \rightarrow \mathrm{\rho}^{+} \pi^{-}} \\ & \mathrm{B}^{\mathrm{o}} \rightarrow \mathrm{\rho}^{\mathrm{o}} \end{aligned}$	$\begin{array}{r} 28 \\ 5 \end{array}$	$\begin{gathered} \hline 5,400 \\ 780 \end{gathered}$	$\begin{aligned} & 4.1 \\ & 0.3 \end{aligned}$	α	$\sim 4^{\circ}$
$\begin{aligned} & \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{~J} / \psi \eta \\ & \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{~J} / \psi \eta^{\prime} \end{aligned}$	$\begin{aligned} & 330 \\ & 670 \end{aligned}$	$\begin{aligned} & \hline 2,800 \\ & 9,800 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\sin (2 \chi)$	0.024

BTeV Physics Reach Rare Decays in 10^{7} s

Reaction	$\mathrm{BR}\left(10^{-6}\right)$	Signal	S/B	Physics
$\mathrm{B}^{\circ} \rightarrow \mathrm{K}^{*}{ }^{\circ} \mu^{+} \mu$	1.5	2530	11	 rate
$\mathrm{B}^{-} \rightarrow \mathrm{K}^{-} \mu^{+} \mu^{-}$	0.4	1470	3.2	rate
$\mathrm{b} \rightarrow \mathrm{s} \mu^{+} \mu^{-}$	5.7	4140	0.13	rate: Wilson coefficients

B. Cox

BTeV Charm Physics Reach

- $D^{0}-D^{0}$ Mixing: Box diagram: $\Delta m_{D}{ }^{S D} / \Gamma<1 \times 10^{-4}$

LD Dispersive: $\Delta m_{D}{ }^{L D} / \Gamma \sim 2 \times 10^{-4}$
LD HQET: $\quad \Delta m_{D}{ }^{L D} / \Gamma \sim(1$ to 2$) \times 10^{-5}$
SM Contribution: $\Delta m_{D}{ }^{S M} / \Gamma<1 \times 10^{-4}$
Current experimental limit $\Delta m_{D} / \Gamma<0.1$ Lots of Discovery room!

- CP Violation: Possibly observe SM CP violation in charm!
$S M: A_{C P} \approx 2.8 \times 10^{-3}$ for $D^{+} \rightarrow K^{* 0} K^{+}$
$A_{C P} \approx-8.1 \times 10^{-3}$ for $D_{s}^{+} \rightarrow K^{*+} \eta^{\prime}$
Expect $\sigma\left(A_{C P}\right)=1 \times 10^{-3}$ for 10^{6} background-free events
Excellent D* tag (efficiency $\approx 25 \%$)
Geant simulation gives \# reconstructed $D^{0} \rightarrow K \pi>10^{8}$
BTeV can do charm physics!
B. Cox

Comparisons of BTeV With

 "Current" $e^{+} e^{-}$B factories- Number of flavor tagged $B^{o} \rightarrow \pi^{+} \pi^{-}\left(B=0.45 \times 10^{-5}\right)$

	$\boldsymbol{L}\left(\mathrm{cm}^{-2} \mathrm{~s}^{-}\right.$ $\left.{ }^{1}\right)$	σ	$\# \mathrm{~B}^{\circ} / 10^{7} \mathrm{~s}$	ε	$\varepsilon \mathrm{D}^{2}$	\#tagged
$\mathrm{e}^{+} \mathrm{e}^{-}$	10^{34}	1.1 nb	1.1×10^{8}	0.45	0.26	56
BTeV $^{2 \times 10^{32}}$	$100 \mu \mathrm{~b}$	1.5×10^{11}	0.021	0.1	1426	

- Number of $B^{-} \rightarrow D^{o} K^{-}$(Full product $B=1.7 \times 10^{-7}$)

	$L_{\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)}$	σ	$\# \mathrm{~B}^{\circ} / 10^{7} \mathrm{~s}$	ε	$\#$
$\mathrm{e}^{+} \mathrm{e}^{-}$	10^{34}	1.1 nb	1.1×10^{8}	0.4	5
BTeV	2×10^{32}	$100 \mu \mathrm{~b}$	1.5×10^{11}	0.007	176

- B_{S}, B_{c} and Λ_{b} not done at $\Upsilon(4 S) e^{+} e^{-}$machines

Other Comparisons of BTeV with Current B-factories

Mode	BTeV (107 ${ }^{\text {s }}$)			B-fact ($500 \mathrm{fb}^{-1}$)		
	Yield	Tagged	S/B	Yield	Tagged	S/B
$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \eta^{\left({ }^{(}\right)}$	12650	1645	>15	-	-	
$\mathrm{B}^{-} \rightarrow \boldsymbol{\text { K }}{ }^{-}$	11000	11000	>10	700	700	4
$\mathbf{B}^{\mathbf{0}} \rightarrow \phi \mathrm{K}_{\text {s }}$	2000	200	5.2	250	75	4
$\mathbf{B}^{0} \rightarrow \mathbf{K}^{*} \mu^{+} \mu^{-}$	2530	2530	11	~ 50	~ 50	3
$\mathbf{B}_{\text {s }} \rightarrow \mu^{+} \mu^{-}$	6	0.7	>15	0		
$\mathrm{B}^{\mathbf{0}} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$	1	0.1	>10	0		
$\mathbf{D}^{*+} \rightarrow \pi^{+} \mathbf{D}^{0}, \mathbf{D}^{0} \rightarrow \mathbf{K} \pi^{+}$	$\sim 10^{8}$	$\sim 10{ }^{8}$	large	8×10^{5}	8×10^{5}	large

October 18, 2003
B. Cox

BTeV vs. Super BABAR

- $\mathrm{L}=10^{36}$ is the goal of Super BABAR (>100 times original design).
- This would compete with BTeV in $B^{0} \& B^{-}$physics, but not in B_{s}
- Still could not do B_{s}, B_{c}, and Λ_{b}
- Problems
- Machine: M2 review at Snowmass (S. Henderson) said:
"Every parameter is pushed to the limit-many accelerator physics \& technology issues"
- Detector: Essentially all the BABAR subsystems would need to be replaced to withstand the particle densities \& radiation load; need to run while machine fills continuously.

BTeV vs. Super KEK

- KEK-B plans for $\mathrm{L}=10^{35}$ in 2007 (10 x original design).
- However \#'s in previous tables are still not competitive with BTeV
- E2 report at Snowmass: Problems for the detector due to higher occupancies, trigger rates, synchrotron radiation, increased pressure in the interaction region \& larger backgrounds at injection.
- Problem areas include: silicon vertex detector, CSI(TI) EM calorimeter because it is slow, and Muon RPC's that already have dead-time losses

Relative to $\mathbf{L H C b}$
disadvantages advantages

- LHCb has much higher B cross section (~ factor of 5)
- LHCb has three times lower interaction per crossing.
- BTeV has lower total cross section (factor of 1.6 lower)
- BTeV has vertex detector in magnetic field which allows rejection of high multiple scattering (low \mathbf{p}) tracks in the trigger
- BTeV is designed around a pixel vertex detector which has much less occupancy, and allows for a detached vertex trigger in the first trigger level.
- Important for accumulation of large samples of rare hadronic decays and charm physics.
- Allows BTeV to run with multiple interactions per crossing, L in excess of $2 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- BTeV will have a much better EM calorimeter
- BTeV is planning to read out $5 x$ as many b's/second

Toroids

Slicon Strips
Electromagna Eleciromagnetic
Calorimeter

Comparison of BTeV with LHCb (from LHCb TDR)

Summary

As the patron saint of Virginia Thomas Jefferson would say, "We hold these truths to be self evident....."

- The BTeV experiment offers a very sensitive way study CP violation and search for new physics in broad spectrum of B and C decays in the coming time period.
- Comparisons with the most ambitious $e^{+} e^{-}$opportunities, even if they can be built, are still favorable to BTeV.
- BTeV when compared with LHCb has significant advantages when the better calorimetry and the broader spectrum of charm and beauty physics made possible by the vertex trigger is taken into account.
- Now that the P5 report has been issued, we hope to proceed expeditiously with the necessary $\boldsymbol{R \&} \&$ and construction to meet the Fermilab schedule of first beam for BTeV in early 2009.

Caveat:

Ambiguities

- A measurement of $\sin (2 \beta)$ using ψK_{s} still results in a 4 fold ambiguity- $\beta, \pi / 2-\beta, \pi+\beta, 3 \pi / 2-\beta$
- Only reason $\eta>0$, is $B_{k}>0$ from theory, and related theoretical interpretation of $\boldsymbol{\varepsilon}^{\boldsymbol{\prime}}$

