Lattice QCD Now and in > 5 Years

Aida X. El-Khadra (UIUC)

Beauty 2003, Oct 14-18, 2003

1

Outline:

- Motivation
- Introduction to lattice QCD
- Some recent developments
- Prospects for the near future
- • f_B
- Semileptonic *B* meson decays $B \rightarrow D, D^* lv$ $B \rightarrow \pi lv$
- •Issues
- Conclusions & Outlook

Motivation

The problem:

for example
$$\frac{d\Gamma(B \rightarrow \pi + v)}{dq^2} = (known) \times |V_{ub}|^2 \times |f_+(q^2)|^2$$

need the hadronic matrix elements from lattice QCD to determine the CKM matrix elements

goal:

2-3% theory errors from lattice QCD

Motivation cont'd

HPQCD (NRQCD+MILC+FNAL), compiled by P. Lepage (hep-lat/0304004)

lattice QCD/experiment

works quite well!

A. El-Khadra, Beauty 2003, Oct 14-18, 2003

Introduction to Lattice QCD

in general:
$$\langle \mathcal{O} \rangle^{\text{lat}} = \langle \mathcal{O} \rangle^{\text{cont}} + O(ap)^n$$
 $n \ge 1$
errors scale with the typical momenta of the particles,
e.g. $(\Lambda_{\text{QCD}} a)^n$ for gluons and light quarks. keep $1/a \pi \Lambda_{\text{QCD}}$
 $\Lambda_{\text{QCD}} \sim 200 - 300 \text{ MeV}$
typical lattice spacing $a \sim 0.1 \text{ fm} \Rightarrow 1/a \sim 2 \text{ GeV}$

Improvement: add more terms to the action to make *n* large

- \succ light quarks ($m_q = \Lambda_{\rm QCD}$ and $am_q = 1$):
 - staggered (Kogut+Susskind): a^2 errors improved staggered (Asqtad): $\alpha_s a^2$ errors (Lepage, MILC)
 - Wilson: a errors (n = 1)Clover (SW): $\alpha_s^2 a \text{ errors}, a^2 \text{ errors}$ (Sheikholeslami+Wohlert)
 - Domain Wall fermions, Overlap, ...

Introduction to Lattice QCD, cont'd

> Heavy Quarks ($m_Q \ \pi \ \Lambda_{\text{QCD}}$ and $am_Q \ \phi \ 1$):

lattice NRQCD (Lepage, et al., Caswell+Lepage):

- discretize NRQCD lagrangian: valid when $am_Q > 1$
- errors: ~ $(ap)^n$, $(p/m_Q)^n$

Fermilab (Kronfeld, Mackenzie, AXK):

- rel. Wilson action has the same heavy quark limit as QCD
- add improvement: preserve HQ limit
- smoothly connects light and heavy mass limits, valid for all am_O
- errors: $\sim (ap)^n$, $(p/m_Q)^n$

errors, errors, errors, ...

✓ statistical errors: from monte carlo integration

- ✓ finite lattice spacing, a: $\langle O \rangle^{lat} = \langle O \rangle^{cont} + O(ap)^n$ take continuum limit: •brute force: computational effort grows like ~ (L/a)⁶ •improving the action: make n larger a (fm)
- \checkmark finite volume
- \succ m_l dependence: chiral extrapolation
- \succ n_f dependence: sea quark effects

perturbation theory

$$\left\langle J_{\mu}^{\mathrm{cont}}\right\rangle = Z^{\mathrm{lat}}\left\langle J_{\mu}^{\mathrm{lat}}\right\rangle$$

systematic errors, cont'd

• chiral extrapolation, *m_l* dependence:

In numerical simulations, $m_l > m_{u,d}$ because of the computational cost for small m.

use chiral perturbation theory to extrapolate to $m_{u,d}$

need $m_l < m_s/2$ and several different values for m_l (easier with staggered than Wilson-type actions)

Decay constants, form factors: chiral logs contribute ~ $m_{\pi}^2 \log(m_{\pi}^2)$

systematic errors, cont'd

• n_f dependence $n_f = 0$: quenched approximation introduces systematic error = 10 = 30% for stable by

introduces systematic error $\sim~10$ – 30 % for stable hadrons

 $n_f \neq 0$:computationally difficultkeep a large, $a \geq 0.1 \text{ fm}$ \longrightarrow need improved actionsuntil 2002: $n_f = 2$ with staggered and SW fermions (a^2 errors)

new MILC (2002): $n_f = 3$ with $m_s \neq m_{light}$ and $m_{light} = m_s/8$, $m_s/4$..., $m_s/2$, ..., m_s using an improved staggered action ($\alpha_s a^2$ errors) "Gold-Plated" Quantities or What are the "easy" lattice calculations ?

For stable (or almost stable) hadrons, masses and amplitudes with no more than one initial (final) state hadron, for example:

• π , K, D, D_{s} , B, B_{s} mesons

masses, decay constants, weak matrix elements for mixing, semileptonic and rare decays

• charmonium and bottomonium (η_c , J/ψ , h_c , ..., η_b , Y(1S), Y(2S), ...) states below open D/B threshold masses, leptonic widths, electromagnetic matrix elements

This list includes most of the important quantities for CKM physics. Excluded are ρ mesons and other resonances.

gold-plated quantities for most CKM elements ...

Recent Developments

- the new MILC configurations include realistic sea quark effects.
 - strategy:
 - the only free parameters in lattice QCD lagrangian: quark masses and $\alpha_{\!s}$
 - tune the lattice QCD parameters using experiment: $m_{u,d}$, m_s , m_c , m_b using π , K, D_s , Y meson masses α_s using 2S-1S splitting in Y system
 - all other quantities should agree with experiment ... try this for some easy quantities ...

Recent Developments cont'd

HPQCD (NRQCD+MILC+FNAL), compiled by P. Lepage (hep-lat/0304004)

lattice QCD/experiment

agreement within ~few % (stat+sys.) errors

Prospects for the near future

work currently in progress using the MILC configurations within the next year we can expect first results for ...

✓ Y and J/ ψ systems using NRQCD and Fermilab actions test the new heavy quark actions $\Rightarrow \alpha_s, m_b, m_c$ The Upsilon Spectrum

HPQCD (Davies, Gray, et al) 2003

The Upsilon Hyperfine Spectrum

HPQCD (Davies, Gray, et al) 2003

for hyperfine splittings still need 1-loop correction to coefficient of $\sigma \cdot B$ term

- ---: Experiment
- : Quenched
- : 2+1 flavours MILC with $m_{u,d} = m_s/5$.

Fermilab 2003 (preliminary)

result at $m_{light} = m_s/4$, a = 0.12 fm with O(a) improved action

Prospects for the near future cont'd

... and expect new results for ...

✓ D,D_s , B, B_s meson systems (NRQCD, Fermilab) using improved staggered light quarks with $m_l < m_s/2$ masses (splittings), decay constants, mixing, SL form factors

 \Rightarrow comparison with CLEO-c essential to test lattice results

expect initial accuracy of < 10% errors with an ultimate goal of 2-3% errors.

The D_s Spectrum

Recent experimental surprise in the D_s spectrum (BaBar, CLEO, Belle):

The new 0^+ and 1^+ states are close (~50 MeV) to $D^{(*)} K$ threshold

⇒ they are not gold-plated quantities for LQCD, may have significant threshold effects

The D_s Spectrum cont'd

f_B

• $n_f = 0$: $f_B = 173$ (23) MeV (Yamada average at Lattice 2002)

has been stable in the last four years dominant error: n_f dependence new in 2003: f_{Bs} with nonpert. matching (APE, ALPHA)

• $n_f \neq 0$: most results (< 2003) have $n_f = 2$ "heavy" (valence) light quarks with $m_l \geq m_s/2$ $\xi_f = f_{Bs} / f_{Bd} = 1.16$ (5) agrees with $n_f = 0$

• in 2002:

include chiral logs in chiral extrapolation (JLQCD) increases $f_{Bs}/f_{Bd} \rightarrow 1.3$ increases the systematic error due to m_l dependence 1^{st} result with $n_f = 3$ (MILC, Lattice 2002) but also with "heavy" valence light quarks

• new in 2003:

preliminary results from HPQCD & FNAL (Lattice 2003) for decay constants on MILC lattices

chiral logarithms

Kronfeld review @ Lattice 2003

chiral logarithms

- Kronfeld+Ryan: chiral logs are small for B_B
- Becirevic, et al: use double ratios: $(f_{Bs}/f_{Bd})/(f_K/f_{\pi})$

f_{Ds} vs sea quark mass

FNAL (Mackenzie, et al) @ Lattice 2003

A. El-Khadra, Beauty 2003, Oct 14-18, 2003

$B \rightarrow D, D^* lv$

Hashimoto, et al (FNAL):

0.85

0.90

 $h_{A_{1}}(1)$

0.95

$B, D \rightarrow \pi l v$

•
$$p_{\pi}(q^2)$$
 dependence: $p_{\pi} \neq 0$
 $\left\langle \pi \mid V_{\mu} \mid B \right\rangle^{\text{lat}} = \left\langle \pi \mid V_{\mu} \mid B \right\rangle^{\text{cont}} + O(ap_{\pi})^n$
 $\Rightarrow p_{\pi} \delta \quad 1 \text{ GeV}$
improved actions help (keep *n* large)

• experiment: measure $d\Gamma/dp_{\pi}$ for 0 $p_{\pi} < m_B/2$

- Note: not a problem for D decays
- Prior to 2003: $n_f = 0$ only
- New in 2003:

new (preliminary) results for *B*, *D* decays to light hadrons on MILC lattices (FNAL, MILC)

$D \rightarrow \pi, K l v$

FNAL (Okamoto, et al) @ Lattice 2003 on the MILC $(n_f = 2+1, a = 0.13 \text{ fm})$ lattices

A. El-Khadra, Beauty 2003, Oct 14-18, 2003

$D \rightarrow \pi l v$ chiral extrapolation

 $m_{valence} = m_{sea}$

A. El-Khadra, Beauty 2003, Oct 14-18, 2003

Issues

test the highly improved light and heavy quark actions NRQCD vs. Fermilab staggered vs. Wilson ?

for n_f = 2+1 staggered fermions one has to take the sqrt(det) - a nonlocal operation:

staggered LQCD = QCD ?

 short distance: ok
 nonpert. quark loop structure: okay, a² corrections known (Bernard, ...)

test staggered LQCD against experiment

semileptonic B decays at high recoil moving NRQCD (Foley, Lepage)

$B \rightarrow \pi l v$ at high recoil

✓ moving NRQCD (Foley, et al):

give the B meson momentum p_B

write the b quark momentum as

 $p_b{}^{\mu} = m_b u^{\mu} + k^{\mu}$

remove $m_b u^{\mu}$ from the dynamics keep all remaining momenta ($p_{\pi} k$, ...) small reduces to regular NRQCD for b quark at rest.

✓ moving relativistic fermions (Boyle, Mackenzie)

moving NRQCD

Outlook for the near future (≤ 5 years)

 ✓ lattice results with realistic sea quark effects are here! expect to see a growing number of results for gold plated quantities within the next few years ⇒ ultimate goal: ~ few % errors

> made possible with the improved staggered action (but still need further tests of staggered LQCD)

✓ improved heavy quark actions Fermilab/NRQCD

2-3% accuracy requires 2-loop pert. matching need to redo pert. calculations for the new actions automated pert. theory methods help

> need high precision experimental results in order to test lattice QCD \Rightarrow CLEO-c for D decays

B decays at high recoil currently: tests of new methods first results within next few years

Outlook for > 5 years

beyond staggered LQCD:

simulations with realistic sea quark effects using ...

- improved Wilson fermions
- Domain Wall fermions
- Overlap fermions
- Seyond perturbative matching nonperturbative methods developed by ALPHA, APE groups
- Seyond gold-plated quantities
 - \bullet Resonances, e.g. $\rho \to \pi \, \pi$
 - States near threshold $\psi(2S)$, $D_s(0^+)$, etc ...
 - hadronic weak decays, e.g. $K \rightarrow \pi \pi$

beyond QCD ?

...

new physics will likely include strong interactions