
I. NRGR

Here I give some detailed notes on how to calculate the 1PN potential in NRGR. Let’s

first work out the power counting in a theory of potentials. It is intended for readers who

have little to no experience calculating Feynman diagrams, and is not familar with the whole

formalism.

First we must fix the power counting. The relevant scales are

Rpl, r, M, Mpl. (1)

where M is the reduced mass, Rpl is the radius of the object and r is the radius of the orbit.

If we ignore Rpl for the moment. We can form two independet dimensionless parameters,

which we will choose to be

v2 =
M

r

1

M2
pl

, (2)

and

L =
M2

vM2
pl

, (3)

All the potential terms in the action will scale like L.

TABLE I: Scaling relations

M2/M2
pl vL

Mdτ L
v2

hrad/Mpl
v5/2

√
L

hpot/Mpl
v2

√
L

The full theory Lagrangian is

S =

∫

−2M2
pl

√
gRd4x (4)

Whereas for the matter action

SM = −m

∫

ds (5)

where

ds = dλ

√

dxµ

dλ

dxν

dλ
gµν(x(λ)). (6)
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This is the unique RPI invariant action. We can choose any parameter we wish.

We then expand around Minkowksi space and choose to parameterize by time.

gµν = ηµν +
hµν

Mpl

(7)

where this is an exact relation we find

ds = dt

√

dxµ

dt

dxµ

dt
+

dxµ

dt

dxν

dt

hµν(x(t))

Mpl
(8)

Then

ds ≈ dt(1 +
1

2
~v2 +

1

2

dxµ

dt

dxν

dt

hµν(x(t))

Mpl

). (9)

so that the action is given by (note we are ignoring radiation here so the metric pertur-

bation is pure potential)

Sm = −M

∫

dt(dτ/dt +
1

2

dxµ

dt

dxν

dt

hµν(x(t))

Mpl
− 1

8

dxµ

dt

dxν

dt

hµν(x(t))

Mpl

dxρ

dt

dxβ

dt

hρβ(x(t))

Mpl
+ ....)

(10)

Now we can expand each term in powers of v. Then include in the diagrams only those ver-

tices which are relevant for the order one is interested in. This gives an effective Lagrangian

which acts as an intermediae step crutch for calculating the potentials.

We are now prepared to calculate the leading order contribution to the vacuum energy,

ignoring for the moment self interactions. This is done by “integrating out” the potential

gravitons. Formally this means doing the path integral over potential field. But these are

just words, in that we dont really do any path integration. What this really means is solve

for the field and plug it back into the action to get an effective lagrangian, from which we

can read off the potentials.

So we calculate all connected diagrams with no external gravitons. The interested reader

who wishes to understand why this is the correct thing to do should consult Peskins textbook

page 364. Note that in his notation we are interested in Z[J ] NOT the effective action which

is the Legendre transform of Z.

I will now sketch a derivation of the fact that the potential coressponds to a sum of

Feynman diagrams. For those who are just interested in plowing ahead in the calculation,

this part can be skipped.

Generically,

Z[J ] =

∫

Dφei
R

d4x(L(φ)+Jφ) (11)
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but in our case J which will the particle world lines and φ is the metric (in the case at hand

the potential part of the metric perturbations around flat space. Z[J ] can be thought of as

the “vacuum persistance amplitude”. That is it is the probability of going from vacuum to

vacuum over a large time T in the presence of a source. Quantum mechanically this means

essentially

〈0 | 0〉J ∼ 〈0 | Tei
R

Lint | 0〉. (12)

Here T stands for time ordering and Lint is the interaction Lagrangian, and we are working

in the so-called “interaction picture”. Now to calculate we use the fact that in the EFT

each term in the action scales as a definate power in v. Thus for a potential at order vn we

simply expand the exponential inlcuding all terms whose net scaling is vn. Then we are left

with an expression of the form

∫

dqxdwy....〈0 | T (h(x)ah(y)b....) | 0〉 (13)

where h is the potential (in this case) graviton and the dimensionality of the the integrations

q and w depend upon whether the term in the action came from a “bulk” four dimensional

interaction (these will be ONLY non-linear terms in h), or a world line term in which case

the integration is over an affine parameter.

Now to calculate this time ordered product we use “Wicks Theorem”, which is discussed

in Peskin on page 88. This theorem tells us that any time ordered product is the sum of

all possible (well ignored disconnected1) “Wick contractions”. A contraction just means we

associate pairs of fields with each other. We replace each such contraction with a propagator

between the corresponding point. In a Feynman diagram this propagator is denoted by a

line joining the corresponding “vertices”. One can associate a space-time point with each

such vertex. This is how we generate a Feynman diagrams. Expand out the exponential,

and use Wick theorem. Each vertex which come with a factor, or sometimes a derivative

which then acts on the propagator.

So to calculate the leading order potential, we expaned the exponent keeping only the

leading order terms in v and due the Wick contractions (in this case there is only one). The

1 Which are disconnected can be seen easily by asociating a vertex with every point and a line for any

propagator connecting the points.
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corresponding potential is given by

−iV =

∫

dt1dτ2M1M2
1

4M2
pl

dxµ
1

dt1

dxν
1

dt1

dxρ
2

dt2

dxσ
2

dt2
〈0 | T [hµν(x1(t1))hρσ(x2(t2))] | 0〉. (14)

The minus sign and factor of i is fixed most easily by just making sure we get back Newton

at leading order. To calculate this we need the graviton propagator.

So we must expand

L = −2M2
pl

√
gR (15)

in terms of

gµν = ηµν +
hµν

Mpl
. (16)

We will then solve for the propagator after which we will calculate in the full theory and

expand in v1 = m2/(RM2
pl). Working in the harmonic gauge the propagator is given by

Dµναβ(q) =
i

q2 + iǫ
Pµν,α,β (17)

where

Pµν,αβ =
1

2
(ηµαηνβ + ηναηµβ − ηµνηαβ) (18)

Then we can read off the leading order potential

−iV T = (−i)2

∫

dt1dt2M1M2
1

4M2
pl

〈0 | T [h00(x1(t1))h00(x2(t2))] | 0〉.

= −
∫

dt1dt2M1M2
1

8M2
pl

∫

[d4p]eip·(x1(t1)−x2(t2)) i

p2

=

∫

dtM1M2
1

8M2
pl

∫

[d3p]e−i~p·(~x1(t)−~x2(t)) i

~p2
+ ....

(19)

To do this integral well insert and mass and then take it to zero when were done

−iV = lim
m→0

∫

dtM1M2
1

8M2
pl

∫

[d3p]e−i~p·(~x1(t)−~x2(t)) i

~p2 + m2

= lim
m→0

∫

dtM1M2
2π

(2π)38M2
pl

∫

p2dpd cos θe−ipr cos θ i

~p2 + m2

= lim
m→0

∫

dtM1M2
2π

(2π)38M2
pl

∫ ∞

0

p

−ir
dp(e−ipr − eipr)

i

~p2 + m2

= lim
m→0

∫

dtM1M2
2π

(2π)38M2
pl

∫ ∞

−∞

p

−ir
dp(e−ipr)

i

~p2 + m2

= − lim
m→0

∫

dtM1M2
2π

r(2π)38M2
pl

−2πi(−im)

−2im
(e−mr)

=

∫

dt
M1M2

32πM2
pl

i

r
(20)
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So that

V = − M1M2

32πM2
pl

1

r
(21)

This potential scales like L, since dt ∝ r/v while M2/M2
pl ∝ Lv. Let us consider the

subleading potentials. The best way to power count sources of potential is by using the fact

that the potential graviton scales as

hpot ∝ R−1v1/2 (22)

To see this note that p ∝ 1/R, E ∝ v/R, and all units for h are in terms of R. Let’s consider

the leading order potential which comes from two insertions of the interaction

Sm = −M

∫

dt(1 +
1

2

dxµ

dt

dxν

dt

hµν(x(t))

Mpl
) (23)

which scales as (for the 0 − 0 component)

M/Mpl(R/v)v1/2/R = (M/Mpl)v
−1/2 =

√
L. (24)

Since M2/M2
pl ∝ Lv. So two insertions of this operator gives Lv0. Lets go to higher order.

ds2 = g00dt2 + 2gi0dxidt + gijdxidxj = (dt2 + h00dt2 − dx2 + hijdxidxj + 2h0idxidt)

= dt2(1 + h00 − v2 + vivjhij + 2h0idxidt)

= dt2(1 + h00)(1 − v2

1 + h00

+
vivjhij

1 + h00

+ 2
vihi0

1 + h00

) (25)

So that

ds = dt(1 +
1

2
h00)(1 − 1

2

v2

1 + h00
+

1

2

vivjhij

1 + h00
+

vihi0

1 + h00
)

≈ dt(1 − 1

2

v2

1 + h00
+

1

2
h00 −

h00

4

v2

1 + h00
+

1

2

vivjhij

1 + h00
+

vihi0

1 + h00
)

≈ dt(1 − 1

2
v2 +

1

2
v2h00 +

1

2
h00 −

h00

4
v2 +

1

2
vivjhij + vihi0)

≈ dt(1 +
1

2
h00 −

1

2
v2 +

1

4
v2h00 +

1

2
vivjhij + vihi0) (26)

thus the kinetic energy term is

SKE =

∫

dt(−M +
1

2
Mv2) (27)

while the linear interaction term is given by

Sm = −M

∫

(
1

2
h00 +

1

4
v2h00 +

1

2
vivjhij + vihi0)dt (28)
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1. Thus the inclusion of one insertion of the v2h00 operator contributes

1

2
(v2

1 + v2
2)V0 (29)

2. Two insertions of the term

Sm = −M

∫

dt(1 + vi hi0(x(t))

Mpl
). (30)

which gives

−iV = (−i)2

∫

dt1dt2M1M2
1

M2
pl

vi
1(t1)v

j
2(t2)(〈0 | T [hi0(x1(t1))hj0(x2(t2))] | 0〉.

= −(−i)2

∫

dtM1M2
1

M2
pl

~v1(t) · ~v2(t)
1

2

∫

[d3p]e−i~p·(~x1(t)−~x2(t))−i

~p2

V = 4~v1(t) · ~v2(t)V0 (31)

3. We can also have the first order correction to the propagator in the leading order term

−iV
(2)
b = i

∫

dt1dt2M1M2
1

8M2
pl

∫

d4peip·(x1(τ)−x2(τ)) p
2
0

~p4

(32)

We can pirate our results from the QED case we worked through to find

V
(2)
b = −

∫

dt1dt2M1M2
[d4p]

8M2
pl

(
∂

∂t1

∂

∂t2
e−ip0(t1−t2))ei~p·(~x1−~x2)

1

~p4

V
(2)
b = −~v1 · ~v2

V0

2
+ (~v1 · ~X)(~v2 · ~X)

V0

2X2
(33)

4. We can also have one leading order insertion and one order v2 insertion. Namely,

−iV =

∫

dτ1dτ2M1M2
(−i)2

4M2
pl

(

vi
1(τ1)v

j
1(τ1)〈T (hij(x1(τ1)h00(x2(τ2))〉 + vi

2(τ2)v
j
2(τ2)〈T (h00(x1(τ1)hij(x2(τ2))〉

)

.

= (−i)2

∫

dτ1dτ2M1M2
1

8M2
pl

(~v1(τ1)
2 + ~v2(τ2)

2)

∫

[ddp]eip·(x1−x2)
−i

~p2

≈
∫

dtM1M2
1

8M2
pl

(~v1(t)
2 + ~v2(t)

2)

∫

[d3p]e−i~p·(~x1(t)−~x2(t)) i

~p2
(34)

Note no minus sign from Euclidean contraction, since it picks out the −ηµν piece of

the propagator. So that

V = (~v2
1 + ~v2

2)V0 (35)
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FIG. 1: Seagull contribution to the potential at order v2.

5. Another coming from the second order term in the expansion of

ds = dτ

√

1 +
dxµ

dτ

dxν

dτ

hµν(x(τ))

Mpl
. (36)

which is

S(2)
m = i

∫

dτ
M

8

dxµ

dτ

dxν

dτ

hµν(x(τ))

Mpl

dxρ

dτ

dxβ

dτ

hρβ(x(τ))

Mpl

. (37)

as shown in the figure. Note the sign flip arises from
√

1 + x = 1 + x/2 − x2/8. Let’s

see how this operator scales

M

M2
pl

(
v1/2

R
)2R

v
∝ M

RM2
pl

∝ M
L

Mv
M2

pl

=
M2

M2
pl

v

L
= (Lv)

v

L
= v2. (38)

We consider a time ordered product of this operator with two insertions of the leading

order operator

Sm = −iM

∫

dτ(1 +
1

2

dxµ

dτ

dxν

dτ

hµν(x(τ))

Mpl

) (39)

So that the net potential will scale as v2L. We have then (we may freely exchange t

and τ at this order)

−iV ≈ −i

∫

dτ1dτ2dτ ′
2M1M

2
2

1

8 × 2 × 2
〈h00(x1(τ1))

Mpl

h00(x1(τ1))

Mpl

h00(x2(τ2))

Mpl

h00(x2(τ
′
2))

Mpl
〉

+ (1 ↔ 2) (40)

There are two possible Wick contractions which give identical contributions, but we

7



also pick up a factor of 1/2 from each propagator

−iV ≈
∫

dτ1dτ2dτ ′
2

M1M
2
2

M4
pl

−i

8 × 2 × 2 × 2 × 2

(

∫

d4peip·(x2(τ2)−x1(τ1)) i

~p2
×
∫

d4p′eip′·(x2(τ2)−x1(τ1)) i

~p′
2

)

+ (1 ↔ 2)

=

∫

−i
dτ

2M1

(

M1M2

8M2
pl

∫

[d3p]e−i~p·(~x2(τ)−~x1(τ)) i

~p2
× M1M2

8M2
pl

∫

[d3p′]e−i~p′·(~x2(τ)−~x1(τ)) i

~p′
2

)

+ (1 ↔ 2)

(41)

Let me explain the symmetry factor. There is a 1/8 from the operator, and two factors

of 1/2 from the leading order operator. There is a factor of 2 from Wick contractions,

but this is cancelled by a factor of 1/2 coming from the expansion of the exponential.

Normally, this extra factor of 1/2 is cancelled by the permutation of the vertices, but in

our case there are no external lines. Then we have two additional factors of 1/2coming

from the propagators. Thus the net contribution from this sea-gull diagram is

V = −
∫

dτ
M1M

2
2

128M4
pl

1

(4π)2

1

r2(τ)
+ (1 ↔ 2). (42)

6. The contribution from the three graviton vertex as shown in the figure.

This calculation takes a little more work. All of the work is in determing the three

graviton effective lagrangian. The idea is to split up
√

gR and keep all trilinear pieces.

What simplifies the calculation is the fact that the propagator with one external h00

graviton obeys certain simple identities

P00:αβP 00:αβ = 1. (43)
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P00:αβηαβ = −1. (44)

P00:αβP 00:αδ =
1

4
δδ
α. (45)

kαP00:αβ = −1

2
kβ. (46)

We did these contractions on the computer and the net result is

iM =
M2

1 M2

2!
(−i/(2Mpl))

3(−2i/Mpl)(i)
3

∫

dτ
[dd−1k]

−~k2

[dd−1p]

−~p2

[dd−1r]

−~r2

−1

8
(~p2 + ~k2 + ~r2) ×

ei~k·~x1(τ)ei~p·~x1(τ)ei~r·~x2(τ)δ3(~k + ~p + ~r). (47)

In reaching this point we did the r0 energy integral. Then integrating over the other two

energies forces the affine parameters to be equal when integrating over the other energy

integrals. Doing the energy integrals is possible because of the NRGR potential propagator.

The only integral which does not vanish is the one with ~r2 in the numerator. The reason is

that for the other two it becomes a tadpole. That means the integral is dimensionless pure

number which can be dropped. All divergent integrals are simple mass renormalizations (at

this order in the PN, indeed up to 5PN for potentials, and 3PN for radiation). If one chooses

to regulate the integrals by analytic continuation to d dimensions, then these integrals are

simply zero. These conclusions fall out simply from the effective field theory as discussed

during the work shop.

=
1

8

M2
1 M2

2!
(−i/(2Mpl))

3(−2i/Mpl)(i)
3

∫

dτ
[dd−1k]

−~k2

[dd−1p]

−~p2
ei~k·(~x1−x2)ei~p·(~x1−x2)

=
1

8

M2
1 M2

2!
(−i/(2Mpl))

3(−2i/Mpl)(i)
3

∫

dτ
[dd−1k]

−~k2

[dd−1p]

−~p2
ei~k·(~x1−x2)ei~p·(~x1−x2)

= −i
M2

1 M2

64M4
pl

V 2
0 (48)

−iV = −i

∫

dτ
M2

1 M2

64M4
pl

1

(4π)2

1

r2(τ)
(49)

Thus the total is

V =

∫

dτ
M2

1 M2

128M4
pl

1

(4π)2

1

r2(τ)
. (50)
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The net sum for the velocity dependent terms (which they don’t see in the static potential)

V (2) = −1

2
(~v2

1 + ~v2
2) + 4(~v1 · ~v2) − (~v2

1 + ~v2
2) − ~v1 · ~v2

1

2
+ (~v1 · ~X)(~v2 · ~X)

1

2X2

= −3

2
(~v2

1 + ~v2
2) +

7

2
(~v1 · ~v2) + (~v1 · ~X)(~v2 · ~X)

1

2X2
(51)

Which agrees with the result of Einstein Infeld and Hoffman. In the paper we present L

instead so there is an overal minus sign.
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